Technische Alternative RT GmbH

AFS215-DL

A-3872 Amaliendorf, Langestraße 124 Tel +43 (0)2862 53635 mail@ta.co.at

Vers. 1.00

Aktor für 14 thermische Stellantriebe

Der Aktor **AFS215-DL** schaltet bis zu 14 thermische Stellantriebe. Diese 14 Ausgänge für Stellantriebe sind für Dauerstrom bis 100mA ausgelegt, Einzelimpulse (Einschaltstrom) bis 1A. Ein zusätzliches Relais (230V / 3A) ist unter Ausgang 15 verfügbar. Zuletzt sind zwei Eingänge für PT1000-Temperatursensoren vorhanden.

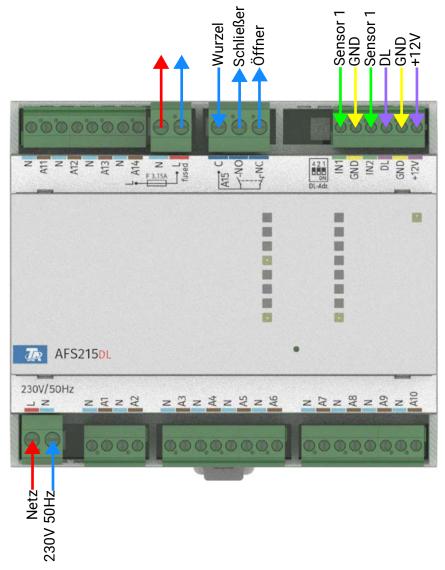
Index

Die Ausgänge des Einzelraumreglers werden über einen **DL-Ausgang** gesteuert.

Index	Kanal
1	Dimensionslose Zahl, deren Bits decodiert werden, um die Ausgänge zu schalten.

Über **DL-Eingänge** werden die Zustände aller Ausgänge erneut Bit-codiert ausgegeben und die 2 Sensoren ausgelesen.

Index	Kanal
1	Dimensionslose Zahl, Bit-codierte Zustände aller Ausgänge.
2	Temperatur °C, PT1000 Sensor S1
3	Temperatur °C, PT1000 Sensor S2

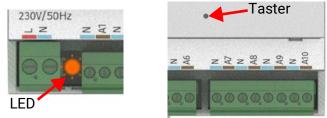

Geeignete Stellantriebe

Folgende Stellantriebe wurden getestet und als geeignet beurteilt. Für die Eignung anderer Stellantriebe, siehe Stellantrieb Eignungstest auf Seite 2.

ALVA Stellantrieb 230 V	Danfoss Thermischer Stellantrieb 230V NC
Herz Stellantrieb 2pkt. 230V NC,770853	EMO T NC230V 0,8 m Stellantrieb
Oventrop Elektrothermischer Stellantrieb Aktor T2P 230V	VoNo Floortec elektrothermischer Stellantrieb 230V
Uponor Vario B Stellantrieb	REHAU Stellantrieb UNI 230V
Roth Stellantrieb NC 230Volt/1Watt	KM596 KELOX Thermikmotor 230V 1 Watt
Möhlenhoff A 20405-00N 230 V NC 1W	Salus T30NC230

Anschluss

Es müssen der DL-Bus (**DL** und **GND**, **nicht vertauschbar**), **12V** (z.B. vom CAN-Bus) und eine **230V**-Versorgung (L, N) angeschlossen werden. Auf geeignete Kabelquerschnitte und Temperaturbeständigkeit auf Grund zutreffender Normen ist zu achten.

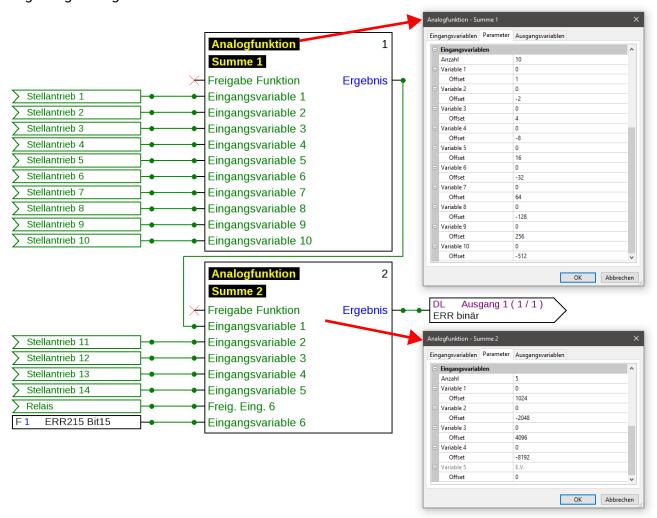


Stellantrieb Eignungstest

Durch Drücken des Tasters wird ein Eignungstest des Stellantriebs an Ausgang 1 durchgeführt. Sobald der Taster betätigt wird, beginnt der Eignungstest sofort. Die LED neben dem Anschluss für Ausgang 1 muss beachtet werden.

Die Eignung eines Stellantriebs bezieht sich auf die Anzahl der notwendigen Anlaufstromimpulse. Je weniger Impulse notwendig sind, desto besser ist der Stellantrieb geeignet.

Die LED leuchtet für jeden Fehlimpuls auf und sollte idealerweise gar nicht, höchstens 1/2-mal aufleuchten. Dies bedeutet einen geeigneten Stellantrieb.


Je öfter die LED aufleuchtet, desto weniger geeignet ist der Stellantrieb.

Auf Seite 1 befindet sich eine Liste mit getesteten Stellantrieben, die als geeignet beurteilt wurden.

Programmierung

Die notwendige Programmierung ist auf unserer Website (ta.co.at) unter Download > Programmierbeispiele verfügbar.

Dem AFS215-DL werden per DL-Bus Ausgang die zu schaltenden Verbraucher vorgegeben. Auf diesen Ausgang wird ein dimensionsloser Wert gesendet. Dessen Bits bestimmen die Zustände der einzelnen Ausgänge am Einzelraumregler. Diese Zahl muss folgendermaßen aus den einzelnen Digitalsignalen generiert werden:

Die Signal-Übernahmen stellen die Digitalsignale da, wobei jedes einen einzelnen Stellantrieb mittels Ein/Aus schaltet. Das Relais (Ausgang 15) wird auf Grund einer technischen Limitation mittels eines Fixwertes geschaltet.

Wichtig: Die "Freigabe Eingangsvariable n'' jeder **unbenutzten** Eingangsvariable muss auf **Aus** gestellt werden! Beispiel: Eingangsvariable **5** ist unbenutzt:

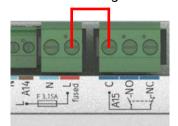
Pin anzeigen Quelletyp Benutzer Beide Analogfunktionen werden im Modus **Summe** betrieben.

Freigabe Eingangsvariable 5

Analogfunktion 1 hat 10 Eingangsvariablen. Die Offsets werden folgendermaßen eingestellt:

EV 1	EV 2	EV 3	EV 4	EV 5	EV 6	EV 7	EV 8	EV 9	EV 10
1	-2	4	-8	16	-32	64	-128	256	-512

Analogfunktion 2 hat 5 Eingangsvariablen. Die Offsets werden folgendermaßen einstellt:


EV 1	EV 2	EV 3	EV 4	EV 5	EV 6
0	-1024	2048	-4096	8192	0

Der Fixwert F1 auf Eingangsvariable 6 der Analogfunktion 2 wird auf Analog, dimensionslos, Wert 16384 eingestellt.

Der DL-Ausgang wird auf Index 1 gestellt.

Relais-Ausgang A15 potentialbehaftet

Der Relais Ausgang A15 ist werksseitig potenzialfrei. Mit der Wurzel **C** kann der Ausgang mit dem Potenzial des Reglers behaftet und mit dessen internen Sicherung abgesichert werden.

A15 potenzialbehaftet und abgesichert

DL-Adresse

Das Gerät hat werksseitig eine Adresse von 1. Mit den Dip-Schaltern im Gerät kann die Adresse geändert werden. Die letztendliche Adresse setzt sich aus der werksseitigen 1 und der Summe der auf "ON" geschalteten Dip-Schalter zusammen.

Beispiel

Gewünschte Adresse	6	
Werkseinstellung	1	
Dip-Schalter 1 und 4	+ 5	
Summe = Adresse	= 6	
Die Dip-Schalter 1 und 4 müssen auf ON gestellt werden.		

Stellung der Dip-Schalter laut Beispiel

Technische Daten

DL-Buslast	10%
Leistungsaufnahme	max. 1 W
Schutzart	IP20
Klemmbereich	max. 1,5 mm ²
Max. Umgebungstemperatur	45 °C
Sicherung (Elektronik u. Ausgänge)	3,15A träge
Nennstrom Triac-Ausgänge (1-14)	max. 100mA dauerhaft, max. 1A Einzelimpulse
Schaltleistung Relais-Ausgang (15)	230V / 3A
Temperatureingänge	PT1000-Sensoren

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Diese Anleitung ist nur für Geräte mit entsprechender Firmware-Version gültig. Unsere Produkte unterliegen ständigem technischen Fortschritt und Weiterentwicklung, wir behalten uns deshalb vor, Änderungen ohne gesonderte Benachrichtigung vorzunehmen.