

www.ta.co.at

RSM610 REGEL- UND SCHALTMODUL

Programmierung: **Allgemeine Hinweise**

Inhaltsverzeichnis

Grundlagen	5
Planungsgrundlagen	5
Renutzerdefinierte Rezeichnungen	0
Programmieren mit TADDS2	7
	/
Eingange	/
	/
Sensontyp und Messgroße	/
DezeiCilliung	10
Mittelwert	10
Sensorcheck für analoge Sensoren	10
Sensorfehler	11
Widerstandstahelle der verschiedenen Fühlertynen	12
NTC-Fühler	12
PTC-Fühler	13
Ausgänge	. 14
Parametrierung	14
Ausgänge 1/2, 3/4, 5/6, 7/8 und 9/10 als Ausgangspaar	15
Alle Schaltausgänge	15
Alle Ausgänge	16
Ausgänge 7 bis 10 als Analogausgänge	16
Ausgang 9 (nur RSM610-MB und RSM610-MB24)	17
Bezeichnung	18
	18
Blockierschutz	19
M-Bus (nur RSM610-MB und RSM610-MB24)	. 20
	20
M-Bus Eingang	22
Dezeichnung	ZZ
Climent	∠3 22
Sensorfehler	23 23
Fixwerte	25
Fixwerte	25
Digital	
Analog	26
Impuls	26
Bezeichnung	27
CAN-Bus	. 28
CAN-Einstellungen für das Modul RSM610	28
Datenlogging	29
CAN-Analogeingänge	31
Knotennummer	31
Bezeichnung	31
CAN-Bus Timeout	31
Einheit	32
Wert bei Timeout	32
Sensorcheck	33
Sensortehler	33
CAN-Digitaleingange	33
	34
Bezeichnung	34
Senaebeaingung	34
UAIN-vigitalausyange	აე ენ
Sendebedingungen	

Inhaltsverzeichnis

DL-Bus	36
DL-Einstellungen	
DL-Eingang	
DL-Bus Adresse und DL-Bus Index	36
Bezeichnung	
DL-Bus Timeout	
Einheit	
Wert bei Timeout	
Sensorcheck	
Sensorfehler	
DL-Digitaleingänge	
Buslast von DL-Sensoren	
DL-Ausgang	
Systemwerte	40
Gerateeinstellungen	42
Aligemein	
Wahrung	
насптапп- / Experten-Kennwort	
Lugang Menu	
CAN- / UL- / M-BUS	
C.M.I. Menü	44
Sollwertänderung	44
Anlegen neuer Elemente	45
Datum / Uhrzeit/ Standort	46
Werteübersicht	48
Eingänge	49
Parametrierung	
Sensortyp und Mess- und Prozessgröße	
Bezeichnung	
Sensorkorrektur, Mitteiwert, Sensorcneck (tur analoge Sensoren)	
Ausyange	53
Anzeige des Ausyanyssialus Anzeige der Analogausgänge	
Anzeige uci Anaioyausyanye Angaanaezählar	
7ählerstände löschen	
Anzeige der Verknünfungen	
Fixwerte	57
Ändern eines digitalen Fixwertes	
Ändern eines analogen Fixwertes	
Aktivieren eines Impuls-Fixwertes	
Grundeinstellungen	59
Version und Seriennummer	60
Meldungen	61
Benutzer	62
Aktueller Benutzer	62
Liste der erlaubten Aktionen	63
Datenverwaltung	64
C.M.L Menii Datenverwaltung	64
Totalreset	
Neustart	
Laden der Funktionsdaten oder Firmware-Update über C.M.I.	
Laden der Funktionsdaten oder Firmware-Update über UVR16x2 oder CAN-MTx2	
Laden der Funktionsdaten oder Firmware über UVR610	
Reset	60
	رن د م
Technische Daten RSM610	70

Grundlagen

Das Regel- und Schaltmodul RSM610 kann als Erweiterungsmodul für frei programmierbare Regelungen UVR16x2, UVR610 und UVR1611 oder auch als selbstständiges Regelgerät eingesetzt werden.

Die Programmierung des RSM610 erfolgt mit der Programmiersoftware TAPPS2, kann aber auch von UVR16x2, UVR610 oder CAN-MTx2 aus erfolgen.

Es sind alle Funktionsmodule der x2-Serie verfügbar. Die Programmierung kann aus maximal 44 Funktionen bestehen.

Das Übertragen der Funktionsdaten oder ein Firmware-Update erfolgt über das C.M.I., von UVR16x2, UVR610 oder CAN-MTx2 aus.

Das RSM610 kann über einen Regler UVR16x2, UVR610, den CAN-Monitor CAN-MTx2 oder über das C.M.I. bedient werden.

Für jede Sprache ist eine eigene Firmware-Version vorgesehen.

Diese Anleitung dient als Programmierhilfe mit der Programmiersoftware **TAPPS2**, gibt aber auch wichtige Erläuterungen zur Bedienung über das C.M.I.

Die Werkzeuge und Verfahren für TAPPS2, welche zur grafischen Erstellung einer Programmierung des RSM610 notwendig sind, werden in der Anleitung von TAPPS2 erläutert.

Beispiel mit TAPPS2

Planungsgrundlagen

Um eine effiziente Programmerstellung zu gewährleisten, muss eine festgelegte Reihenfolge eingehalten werden:

1	Grundvoraussetzung zur Erstellung der Programmierung und der Parametrierung ist ein exak tes hydraulisches Schema.		
2	Anhand dieses Schemas muss festgelegt werden, was wie geregelt werden soll.		
3 Aufgrund der gewünschten Regelfunktionen sind die Sensorpositionen zu bestimmen Schema einzuzeichnen.			
4	Im nächsten Schritt werden alle Sensoren und Ausgänge mit den gewünschten Ein- und Aus- gangsnummern versehen.		
	Da die Sensoreingänge und Ausgänge unterschiedliche Eigenschaften besitzen, ist eine einfa- che Durchnummerierung nicht möglich. Die Ein- und Ausgangsbelegung muss daher an Hand dieser Anleitung erfolgen.		
5	Danach erfolgt der Aufruf der Funktionen und deren Parametrierung.		

Bezeichnungen

Zur Bezeichnung aller Elemente können vorgegebene Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierte Bezeichnungen ausgewählt werden.

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

Benutzerdefinierte Bezeichnungen

Es können bis zu **100 verschiedene Bezeichnungen** vom Benutzer definiert werden. Die maximale Anzahl an Zeichen pro Bezeichnung ist **24**.

Die bereits definierten Bezeichnungen stehen allen Elementen (Eingänge, Ausgänge, Funktionen, Fixwerte, Bus-Ein- und Ausgänge) zur Verfügung.

Beispiel:

Dem Eingang 1 soll eine benutzerdefinierte Bezeichnung "T.oben" zugeteilt werden.

Durch Anklicken dieses Feldes erscheint das Fenster für die **Verwaltung** und Auswahl aller Bezeichnungen.

Zuerst werden die vom Programm vorgegebenen Bezeichnungen angezeigt. Die Bezeichnungen werden in verschiedene **Gruppen** aufgeteilt. Eine Suchfunktion erleichtert die Auswahl. Es genügt die Eingabe eines Wortteils des gesuchten Begriffes.

Wird die gewünschte Bezeichnung nicht gefunden, kann diese durch Anklicken des Plus-Symbols sofort als benutzerdefinierte Bezeichnung übernommen werden.

Mit "**OK**" wird diese neu definierte Bezeichnung für das Objekt übernommen.

Programmieren mit TAPPS2

Nachfolgend wird für alle Elemente die Parametrierung in der Programmiersoftware TAPPS2 beschrieben.

Eingänge

Das Modul besitzt 6 Eingänge für analoge (Messwerte), digitale (EIN/AUS) Signale oder Impulse.

Parametrierung

Sensortyp und Messgröße

Nach Auswahl des gewünschten Eingangs erfolgt die Festlegung des Sensortyps.

igonge engong i dibe	
Zeichnungsobjekt: Eing	ang 1 🗸 🗸 🗸
arameter	
BezGruppe	
Bezeichnung	
Bez,-Index	
Allgemein	
Тур	unbenutzt 🖂
Messgröße	unbenutzt
Prozessgröße	Digital
Sensor	Analog
Sensorkorrektur	Impuls 13
Quotient	
Einheit	
Zeiteinheit	
Mittelwert	
Skalierung	
Eingangswert 1	
Zielwert 1	
Eingangswert 2	
Zielwert 2	
Sensorcheck	
Sensorcheck	
Hurzschlussschwelle	

Es stehen 3 Typen des Eingangssignals zur Verfügung

- Digital
- Analog
- Impuls

8

Programmieren mit TAPPS2 – Eingänge

Digital

Auswahl der Messgröße:

- Aus / Ein
 Aus / Ein (invers)
- Nein / Ja
 Nein / Ja (invers)

Analog

Auswahl der **Messgröße:**

• Temperatur

Auswahl des Sensortyps: **KTY** (2 k Ω /25°C = ehemalige Standardtype der Technischen Alternative), **PT 1000** (= aktuelle Standardtype), Raumsensoren: **RAS**, **RASPT**, Thermoelement **THEL**, **KTY** (1 k Ω /25°C), **PT 100**, **PT 500**, **Ni1000**, **Ni1000 TK5000**

- Solarstrahlung (Sensortyp: GBS01)
- Spannung (Eingänge 1-3 und 6: max. 3,3 V, Eingänge 4 und 5: max. 10V)
- Widerstand
- Feuchte (Sensortyp: RFS)
- Regen (Sensortyp: RES)

Zusätzliche Auswahl der Prozessgröße für die Messgröße Spannung und Widerstand:

- dimensionslos
- dimensionslos (,1)
- Arbeitszahl
- dimensionslos (,5)
- Temperatur °C
- Globalstrahlung
- CO₂-Gehalt ppm
- Prozent

- Absolute Feuchte
- Druck bar, mbar, Pascal
- Liter
- Kubikmeter
- Durchfluss (l/min, l/h, l/ d, m³/min, m³/h, m³/d)
- Leistung
- Spannung

- Stromstärke mA
- Stromstärke A
- Widerstand
- Frequenz
- Geschwindigkeit (km/h, m/s)
- Grad (Winkel)
- Gewicht (kg, t)
- Länge (mm, cm, m)

Anschließend muss der Wertebereich mit der Skalierung festgelegt werden. **Beispiel** Spannung/Globalstrahlung

	Skalierung		
	Eingangswert 1	0,00 V	_
	Zielwert 1	0 W/m ²	
	Eingangswert 2	3,00 V	
	Zielwert 2	1500 W/m ²	

0,00V entsprechen 0 W/m², 3,00V ergeben 1500 W/m².

Impulseingang

Der Eingang 6 kann Impulse mit **max. 20 Hz** und mindestens **25 ms** Impulsdauer erfassen (**S0**-Impulse).

Die Eingänge 1 - 5 können Impulse mit **max. 10 Hz** und mindestens **50 ms** Impulsdauer erfassen. **Auswahl der Messgröße**

Тур	Impuls
Messgröße	Windgeschwindigkeit 🗸
Prozessgröße	Windgeschwindigkeit
Sensor	Durchfluss
Sensorkorrektur	Impuls
Ouotient	Benutzerdefiniert

Windgeschwindigkeit

Für die Messgröße **"Windgeschwindigkeit**" muss ein Quotient eingegeben werden. Das ist die Signalfrequenz bei **1 km/h**.

Beispiel: Der Windsensor **WIS01** gibt bei einer Windgeschwindigkeit von 20 km/h jede Sekunde einen Impuls aus (= 1Hz). Daher ist die Frequenz bei 1 km/h gleich 0,05Hz.

		•
O 12 1	0.0511	
Unotient	U U D H7	
Quotient	0,00112	

Einstellbereich: 0,01 - 1,00 Hz

Durchfluss

Für die Messgröße **"Durchfluss**" muss ein Quotient eingegeben werden. Das ist die Durchflussmenge in Liter pro Impuls.

Quotient 0,5 I/Imp	Quotient
--------------------	----------

Einstellbereich: 0,1 - 100,0 l/Impuls

Impuls

Diese Messgröße dient als Eingangsvariable für die Funktion "**Zähler**", Impulszähler mit Einheit "Impulse".

Benutzerdefiniert

Für die Messgröße "Benutzerdefiniert" müssen ein Quotient und die Einheit eingegeben werden

Quotient	0,50000 l/Imp
Einheit	L
Zeiteinheit	/h

Einstellbereich Quotient: 0,00001 – 1000,00000 Einheiten/Impuls (5 Nachkommastellen) Einheiten: I, kW, km, m, mm, m³.

Für l, mm und m³ muss zusätzlich die Zeiteinheit ausgewählt werden. Für km und m sind die Zeiteinheiten fix vorgegeben.

Beispiel: Für die Funktion "Energiezähler" kann die Einheit "kW" verwendet werden. Es wurde 0,00125 kWh/Impuls gewählt, das entspricht 800 Impulse /kWh.

Quotient	0,00125 kWh/Imp	125 kWh/Imp	
Einheit	kW		
Zeiteinheit			

Bezeichnung

Eingabe der Eingangsbezeichnung durch Auswahl vorgegebener Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierter Bezeichnungen.

Sensortyp Analog / Temperatur:

- Allgemein
- Erzeuger
- Verbraucher
- Leitung
- Klima
- Benutzer (benutzerdefinierter Bezeichnungen)

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

Sensorkorrektur

Für die Messgrößen Temperatur, Solarstrahlung, Feuchte und Regen des Sensortyps Analog besteht die Möglichkeit einer Sensorkorrektur. Der korrigierte Wert wird für alle Berechnungen und Anzeigen verwendet.

Beispiel: Temperatursensor PT1000

Тур	Analog
Messgröße	Temperatur
Prozessgröße	
Sensor	PT 1000
Sensorkorrektur	0,2 K

Mittelwert

Mittelwert	10 Sek	
TYTEL CONTRACTOR	i, o ben	

Diese Einstellung betrifft die **zeitliche** Mittelung der Messwerte.

Eine Mittelwertbildung von 0,3 Sekunden führt zu einer sehr raschen Reaktion der Anzeige und des Gerätes, allerdings muss mit Schwankungen des Wertes gerechnet werden.

Ein hoher Mittelwert führt zu Trägheit und ist nur für Sensoren des Wärmemengenzählers empfehlenswert.

Bei einfachen Messaufgaben sollte etwa 1 - 3 Sekunden gewählt werden, bei der hygienischen Warmwasserbereitung mit dem ultraschnellen Sensor 0,3 – 0,5 Sekunden.

Sensorcheck für analoge Sensoren

	Sensorcheck		
	Sensorcheck	Ja	
Ξ	Kurzschlussschwelle	Standard	
	Schwellwert		
-	Kurzschlusswert	Standard	
	Ausgabewert		
-	Unterbrechungsschwelle	Standard	
	Schwellwert		
	Unterbrechungswert	Standard	
	Ausgabewert		

Ein aktiver **"Sensorcheck"** (Eingabe: **"Ja**") erzeugt bei einem Kurzschluss bzw. einer Unterbrechung automatisch eine Fehlermeldung: In der oberen Statusleiste wird ein **Warndreieck** angezeigt, im Menü **"Eingänge**" erhält der defekte Sensor einen roten Rahmen.

Beispiel:

1 2 3+4 5 6 <mark>7</mark> 8	91	Eingänge	MI 1 Unterbrechung des Sensors 1 Standard-Wert
	1: T.Raum	K	9999.9 °C

Sensorfehler

Bei aktivem **"Sensorcheck**" steht der **Sensorfehler** als Eingangsvariable von Funktionen zur Verfügung: Status **"Nein**" für einen korrekt arbeitenden Sensor und **"Ja**" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden.

In den Systemwerten / Allgemein steht der Sensorfehler aller Eingänge zur Verfügung.

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der unteren **Messgrenze** und eine Unterbrechung bei Überschreiten der oberen **Messgrenze** angezeigt.

Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

Durch passende Auswahl der Schwellen und Werte kann bei Ausfall eines Sensors dem Regler ein fester Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann.

Beispiel: Wird die Schwelle von 0°C (= "Schwellwert") unterschritten, wird ein Wert von 20,0°C (= "Ausgabewert") für diesen Sensor angezeigt und ausgegeben (fixe Hysterese: 1,0°C). Gleichzeitig wird der Status "Sensorfehler" auf "**Ja**" gesetzt.

	Sensorcheck	Ja	
=	Kurzschlussschwelle	Benutzerdef.	
	Schwellwert	0,0 °C	
Ξ	Kurzschlusswert	Benutzerdef.	
	Ausgabewert	20,0 °C	

6: T.Raum 20.0 °C

Hat der Sensor 0°C unterschritten, wird daher als Messwert 20°C ausgegeben, gleichzeitig wird ein Sensorfehler (roter Rahmen) angezeigt.

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden.

Bei der **Spanungsmessung** der Eingänge 1-3 und 6 (max. 3,3V) ist zu beachten, dass der Innenwiderstand der **Spannungsquelle** 100 Ohm nicht überschreiten darf, um die Genauigkeit It. technischen Daten nicht zu unterschreiten.

Spannungsmessung Eingänge 4 und 5: Die Eingangsimpedanz des Reglers beträgt 30kOhm. Es ist darauf zu achten, dass die Spannung nie über 10,5V steigt, da sonst die anderen Eingänge extrem negativ beeinflusst werden.

Widerstandsmessung: Bei Einstellung Prozessgröße "dimensionslos" ist die Messung nur bis $30k\Omega$ möglich. Bei Einstellung Prozessgröße "Widerstand" und Messung von Widerständen >15k Ω sollte die Mittelwertzeit erhöht werden, da die Werte leicht schwanken.

Widerstandstabelle der verschiedenen Fühlertypen

Temp.		0	10	20	25	30	40	50	60	70	80	90	100
PT1000	[Ω]	1000	1039	1078	1097	1117	1115	1194	1232	1271	1309	1347	1385
KTY (2kΩ)	[Ω]	1630	1772	1922	2000	2080	2245	2417	2597	2785	2980	3182	3392
KTY (1kΩ)	[Ω]	815	886	961	1000	1040	1122	1209	1299	1392	1490	1591	1696
PT100	[Ω]	100	104	108	110	112	116	119	123	127	131	135	139
PT500	[Ω]	500	520	539	549	558	578	597	616	635	654	674	693
Ni1000	[Ω]	1000	1056	1112	1141	1171	1230	1291	1353	1417	1483	1549	1618
Ni1000 TK5000	[Ω]	1000	1045	1091	1114	1138	1186	1235	1285	1337	1390	1444	1500

Die Standardtype der Technischen Alternative ist **PT1000**.

PT100, PT500: Da diese Sensoren gegenüber äußeren Störungseinflüssen anfälliger sind, müssen die Sensorleitungen **geschirmt** sein und sollte die **Mittelwertszeit** erhöht werden. Trotzdem kann die für PT1000-Sensoren geltende Genauigkeit It. technischen Daten **nicht garantiert** werden.

NTC-Fühler

Sensor	NTC	
Sensorkorrektur	0,0 K	
R25	10,00 kΩ	
Beta	3800	

Für die Auswertung von NTC-Fühlern ist die Angabe des R25- und des Beta-Wertes erforderlich. Der Nennwiderstand R25 bezieht sich immer auf 25°C.

Der Beta-Wert bezeichnet die Charakteristik eines NTC-Fühlers in Bezug auf 2 Widerstandwerte. Beta ist eine Materialkonstante und kann aus der Widerstandstabelle des Herstellers mit folgender Formel berechnet werden:

$$B = \frac{\ln \frac{R1_{(NT)}}{R2_{(HT)}}}{\frac{1}{T1_{(NT)}} - \frac{1}{T2_{(HT)}}}$$

Da der Beta-Wert keine Konstante über den gesamten Temperaturverlauf ist, müssen die zu erwartenden Grenzen des Messbereichs festgelegt werden (z.B. für einen Speicherfühler von +10°C bis +100°C, oder für einen Außenfühler von -20°C bis +40°C).

Alle Temperaturen in der Formel müssen als **absolute Temperaturen in K** (Kelvin) angegeben werden (z.B. +20°C = 273,15 K + 20 K = 293,15 K)

- In natürlicher Logarithmus
- R1_(NT) Widerstand bei der unteren Temperatur des Temperaturbereichs
- R2_(HT) Widerstand bei der oberen Temperatur des Temperaturbereichs
- T1_(NT) untere Temperatur des Temperaturbereichs
- T2_(HAT) obere Temperatur des Temperaturbereichs

PTC-Fühler

Sensor	PTC	Für die Auswertung von PTC-Fühlern ist ebenfalls die Angabe
Sensorkorrektur	0,0 K	des R25-Wertes erforderlich. Der Nennwiderstand R25 bezieht
R25	1,00 kΩ	sich auf 25°C.
Alpha (x10^-3)	7,95000	Zusätzlich werden die Angaben Alpha (x10^-3) und Beta (x10^-
Beta (x10^-6)	19,50000	6) benötigt. Die Werte Alpha und Beta sind normalerweise dem
		Datenblatt des PTC-Fühlers zu entrehmen und nach Anwen-

6) benötigt. Die Werte Alpha und Beta sind normalerweise dem Datenblatt des PTC-Fühlers zu entnehmen und nach Anwendung der jeweils nebenstehenden Formel einzugegeben.

Zur Berechnung der Werte **Alpha** und **Beta** werden zwei beliebige Widerstandswerte und deren zugehörige Temperaturen laut der Widerstandstabelle des jeweiligen PTC-Sensors gewählt.

R ₁ Widerstandswert 1 (Ohm)	$T_1 \dots$ Temperatur bei Widerstand R_1 (°C)	ΔT ₁ = T ₁ – 25°C
R ₂ Widerstandswert 2 (Ohm)	T_2 Temperatur bei Widerstand R_2 (°C)	$\Delta T_2 = T_2 - 25^{\circ}C$

Beta sollte zuerst berechnet werden, da jener Wert für die Berechnung von Alpha notwendig ist.

$$B = \frac{R_2 - R25}{\Delta T_2 \times R25 \times (\Delta T_2 - \Delta T_1)} + \frac{R_1 - R25}{\Delta T_1 \times R25 \times (\Delta T_1 - \Delta T_2)}$$

$$A = \frac{R_1 - R25}{R25 \times \Delta T_1} - \Delta T_1 \times B$$

Ausgänge

Der Regler besitzt 10 Ausgänge.

Man unterscheidet folgende verschiedene Ausgangstypen, die aber nicht bei allen Ausgängen wählbar sind:

- Schaltausgang
- Ausgangspaar
- 0-10V
- PWM

Die Ausgänge 1 bis 6 können nur als Schaltausgänge oder als Ausgangspaare parametriert werden. Die Ausgänge 7 bis 10 sind in erster Linie als 0-10V- oder PWM-Ausgänge zur Drehzahlregelung von Pumpen oder Modulation von Wärmeerzeugern vorgesehen. Man kann aber auch mit Hilfe von Zusatz-Hilfsrelais (z.B. HIREL-230V) diese Ausgänge als Schaltausgänge oder Ausgangspaare verwenden.

In den Modulen RSM610-**24** und RSM610-**MB24** dient der **Ausgang 7** als Spannungsversorgung für 24V-Geräte. In den Modulen RSM610-**MB** und RSM610-**MB24** dient der **Ausgang 9** als M-Bus-Eingang für bis zu 4 M-Bus-Zähler.

Parametrierung

Nach Auswahl des gewünschten Ausgangs erfolgt die Festlegung des Ausgangstyps.

Zeichnung	sobjekt: Au	isgang 2 🗸 🗸 🗸
rknüpfungen Paramet		Blockierschutz
BezGruppe		
Bezeichnung	3	
BezIndex		
Allgemein		
Тур	un	benutzt
Modus	un	benutzt
Verzögerung	Scl	haltausgang
Nachlauf	Au	sgangspaar
Laufzeit		
Laufzeitbegr	enzung	
Ausgangswe	ert Digital /	Handbetrieb
Dominant A	us	
Digital Ein		
Skalierung		
Eingangswei	rt 1	
Zielwert 1		
Eingangswei	rt 2	
Zielwert 2		
Ausgangssta	atus	
EIN wenn		
Schwelle		
Handbetriel	b	
Änderbar du	irch	

Ausgänge 1/2, 3/4, 5/6, 7/8 und 9/10 als Ausgangspaar

-	Allgemein		
	Тур	unbenutzt	~
	Modus	unbenutzt	
	Verzögerung	Schaltausgang	
	Nachlauf	Ausgangspaar	
	Laufzeit		

Diese Ausgänge können als einfache Schaltausgänge oder zusammen mit dem **nachfolgenden** Schaltausgang als **Ausgangspaar** (z.B. Ansteuerung eines Mischerantriebs) verwendet werden.

Die Ausgangspaare **7/8** und **9/10** benötigen den Einsatz von Hilfsrelais (Relaismodulen).

Laufzeit

Allgemein					
Тур	Ausgangspaar				
Modus					
Verzögerung					
Nachlauf					
Laufzeit	02:30 [mm:ss]				
Laufzeitbegrenzung	Ja				

Für jedes **Ausgangspaar** muss die Mischer-Laufzeit eingegeben werden.

Wird Mischerlaufzeit 0 eingegeben, erfolgt keine Ansteuerung des Ausgangspaars.

Laufzeitbegrenzung

Bei **aktiver** Laufzeitbegrenzung wird die Ansteuerung des Ausgangspaars beendet, wenn die Restlaufzeit von 20 Minuten auf 0 heruntergezählt ist. Die Restlaufzeit wird neu geladen, wenn das Ausgangspaar in den Handbetrieb umgestellt, von einer Meldung (dominant EIN oder AUS) angesteuert wird, sich die Ansteuerungsrichtung ändert oder die Freigabe von AUS auf EIN umgeschaltet wird.

Wird die Laufzeitbegrenzung **deaktiviert**, dann wird die Restlaufzeit nur bis 10 Sekunden heruntergezählt und die Ansteuerung des Ausgangspaares wird nicht beendet.

Ausgangspaare werden in der Statuszeile mit einem **"+**" zwischen den Ausgangsnummern angezeigt.

Beispiel: Ausgänge 3+4 sind als Ausgangspaar parametriert

1 2 3+4 5 6 7 8 9 10

Wirken 2 verschiedene Funktionen gleichzeitig auf beide Ausgänge des Ausgangspaars, so wird der Ausgang mit der niedrigeren Nummer ("AUF"-Befehl) aktiviert.

Ausnahme: Funktion **"Meldung"** – kommt der gleichzeitige Befehl von dieser Funktion, so wird der Ausgang mit der höheren Nummer ("ZU"-Befehl) aktiviert.

Alle Schaltausgänge

Тур	Schaltausgang
Modus	
Verzögerung	00:00 [mm:ss]
Nachlauf	00:00 [mm:ss]
Laufzeit	
Laufzeitbegrenzung	

Für alle **Schalt**ausgänge kann eine Einschaltverzögerung und eine Nachlaufzeit festgelegt werden.

MI 19.7.2017 14:02

Alle Ausgänge

Anwender	~
Anwender	
Fachmann	
	Anwender Anwender Fachmann

Für alle Ausgänge kann der Handbetrieb auf **Benutzergruppen** (Anwender, Fachmann, Experte) eingeschränkt werden.

Ausgänge 7 bis 10 als Analogausgänge

Allgemein		
Тур	unbenutzt	~
Modus	unbenutzt	8.4.
Verzögerung	Schaltausgang	
Nachlauf	Ausgangspaar	
Laufzeit	0-10V	
Laufzeitbegrenzung	PWM	

Diese Ausgänge stellen eine Spannung von 0 bis 10V zur Verfügung, z.B. zur Leistungsregelung von Brennern (Brennermodulation) oder Drehzahlregelung von Elektronikpumpen.

Die Ausgabe erfolgt wahlweise als Spannung (0 - 10 V) oder als PWM-Signal.

Wird in den Modulen RSM610-**24** oder RSM610-**MB24 der Ausgang 7** als Schalt-, 0-10V- oder PWM-Ausgang parametriert, so hat das keinen Einfluss auf diesen Ausgang, er gibt permanent 24V aus.

In den Modulen RSM610-**MB** oder RSM610-**MB24** kann der **Ausgang 9** nicht als Schalt-, 0-10V- oder PWM-Ausgang parametriert werden.

Sie können von der PID-Funktion oder auch von anderen Funktionen angesteuert werden. Die "Skalierung" bietet die Möglichkeit, den Analogwert der Quelle (mit oder ohne Nachkommastelle) dem Regelbereich des zu regelnden Gerätes anzupassen.

Im Modus **PWM** (Pulsweitenmodulation) wird ein Rechtecksignal mit einem Spannungspegel von ca. **10V** und einer Frequenz von **1kHz** mit variablem Tastverhältnis (0 - 100%) erzeugt.

Wirken mehrere Funktionen (Analogwerte) gleichzeitig auf einen Analogausgang, wird der höhere Wert ausgegeben.

Bei Aktivierung des Analogausgangs über einen **Digitalbefehl** kann eine Ausgangsspannung zwischen 0,00V und 10,00V (bzw. 0,0% – 100,0% bei PWM) festgelegt werden. Digitalbefehle sind gegenüber einer Verknüpfung mit einem Analogwert **dominant**.

Die Aktivierung des Analogausgangs über "**Dominant Aus**" und "**Digital Ein**" ist durch folgende digitale Signale möglich:

Ausgangswert Die	eb	
Dominant Aus	5,00 V	
Digital Ein	10,00 V	
Beispiel: Dominant Aus: Ausgangsv	wert 5,00V	Beispiel: Digital Ein: Ausgangswert 10,00V
Dominant Aus (von Meldungen)		Dominant Ein (von Meldungen)
Hand Aus		Hand Ein
		Digital Ein
		Antiblockierschutz

Ausgangsstatus der Analogausgänge

🗉 Ausgan	gsstatus		
EIN we	nn	lst > Schwelle	~
Schwel	le	lst > Schwelle	
	etrieb	lst < Schwelle	

Für den Ausgangsstatus kann festgelegt werden, ob der Status EIN oberhalb oder unterhalb einer einstellbaren Schwelle ausgegeben werden soll.

Beispiel: Wenn der Analogausgang über 3,00 V ausgibt, dann geht der Ausgangsstatus von AUS auf EIN.

-	Ausgangsstatu	s	
	EIN wenn	lst > Schwelle	
	Schwelle	3,00 V	

Je nach technischen Eigenschaften der angesteuerten Pumpe kann somit der Ausgangsstatus so eingestellt werden, dass dieser nur dann auf EIN steht, wenn die Pumpe tatsächlich läuft.

Soll mit einem Analogausgang (A7 – A10) zugleich auch ein Schaltausgang mitgeschaltet werden, kann dies durch geeignete Programmierung erreicht werden.

Beispiel: Sobald der Ausgangsstatus des Analogausganges auf EIN geht, wird dieser EIN-Befehl über die Logikfunktion an den Schaltausgang weitergegeben.

Beispiele verschiedener Skalierungen

- SI Ei

Skalierung	Skalierung			
Eingangswert 1	0	die		
Zielwert 1	0.00 V	sol		
Eingangswert 2	100			
Zielwert 2	10,00 V			

Ilgröße von PID-Funktion: Modus 0-10V, Stellgröße 0 soll 0V, die Stellgröße 100 II 10V entsprechen.

E	Skalierung		Temperaturwert, z.B. von einer Analogfunk-
	Eingangswert 1	0	tion: Modus PWM, die Temperatur 0°C soll
	Zielwert 1	0.0 %	0%, die Temperatur 100,0°C soll 100% ent-
	Eingangswert 2	1000	sprechen.
	Zielwert 2	100,0 %	Die Temperatur wird in 1/10°C ohne Kom-
			ma übernommen

Skalierung		Brennerleistung, z.B. von den Funktionen
Eingangswert 1	0	Warmwasseranforderung oder Wartung:
Zielwert 1	0,00 V	Modus 0-10V, die Brennerleistung von 0,0%
Eingangswert 2	1000	soll 0V, 100,0% sollen 10V entsprechen.
Zielwert 2	10,00 V	Der Prozentwert wird in 1/10% ohne Kom-

ma übernommen.

Ausgang 9 (nur RSM610-MB und RSM610-MB24)

Der Ausgang 9 dient in diesen Modulen als M-Bus-Eingang und wird daher immer als "unbenutzt" angezeigt.

Bezeichnung

Eingabe der Ausgangsbezeichnung durch Auswahl vorgegebener Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierter Bezeichnungen.

- Allgemein
- Klima
- Benutzer (benutzerdefinierter Bezeichnungen)

Zusätzlich kann jeder Bezeichnung eine Zahl von 1 bis 16 zugeordnet werden.

Übersicht Ausgänge

	Schaltausgang Relais Schließer	Schaltausgang Relais Schließer + Öffner	Schaltausgang Relais potentialfrei Schließer + Öffner	Ausgangspaar für Mischer, etc.	0-10V oder PWM
Ausgang 1	x			x	
2	x			x	
3	x			x	
4	x			x	
5	x			x	
6		x	x	x	
7	x ¹			x ¹	X
8	x ¹			x ¹	x
9	x ¹			x ¹	x
10	x ¹			x ¹	x

¹ Ausgänge **7-10** als Schaltausgänge oder Ausgangspaare **nur mit Zusatzrelais möglich**.

Der Ausgang **A6** kann durch Herausnehmen einer Brücke (**J**umper) potentialfrei gemacht werden. Der Ausgang **A7** kann in den Modulen RSM610-**24** und RSM610-**MB24** nur als **24V**-Spannungsversorgung verwendet werden.

Der Ausgang **A9** kann in den Modulen RSM610-**MB** und RSM610-**MB24** nur als **M-Bus**-Eingang verwendet werden.

Blockierschutz

Umwälzpumpen, die längere Zeit nicht laufen (z.B. Heizkreispumpe während des Sommers), haben oft Anlaufprobleme in Folge innerer Korrosion. Dieses Problem lässt sich umgehen, indem die Pumpe periodisch für 30 Sekunden eingeschaltet wird.

In jedem Ausgangsmenü kann der **Blockierschutz** für alle Ausgänge festgelegt werden. Es kann ein Zeitpunkt sowie alle Ausgänge angegeben werden, die einen Blockierschutz erhalten sollen. **Beispiel:**

	eichnun	gsobjekt:	Ausgan	g 7			~			
rknū	ipfungen	Param	eter Blog	kierschut			_			
	Mo	Di	Mi	Do	Fr	Sa	So			
			Um	n: 16:30	Uhr					
1	Ausgäng	e (Schalta	ausg.)							
1	A1	A2	✓ A3	✓ A4	A5	A6	A7	┥		Ausga
	A8	□ A9	A10							

Laut Beispiel werden am Dienstag und am Freitag ab 16.30 Uhr die Pumpen 3,4 und 6 für 30 Sekunden in Betrieb genommen, wenn der Ausgang seit dem Modulstart bzw. dem letzten Aufruf des Blockierschutzes nicht aktiv war.

Das Modul schaltet nicht alle Ausgänge zugleich ein, sondern beginnt mit einem Ausgang, schaltet nach 30 Sekunden zum nächsten, und so weiter.

M-Bus (nur RSM610-MB und RSM610-MB24)

Der M-Bus ist ein Master-Slave-System für die Datenauslesung von Energie- und Volumenzählern (Strom, Wärme, Wasser, Gas).

Der M-Bus-Eingang ist für maximal 4 M-Bus "unit loads" konzipiert, es können daher bis zu 4 M-Bus Zähler mit je 1 "unit load" angeschlossen werden. Das Modul (Master) liest zyklisch die Werte der einzelnen Geräte aus, die Intervallzeit ist einstellbar.

Das Modul ist daher als Master für den parallelen Anschluss von maximal vier M-Buszählern (Slaves) geeignet.

Es können **in Summe** max. 32 M-Buswerte pro Modul ausgelesen werden. Es darf nur einen Master im M-Bus-System geben.

Dieses Menü enthält alle Angaben und Einstellungen, die für den Aufbau eines M-Bus-Netzwerkes notwendig sind.

Einstellungen

Im Menü Geräteeinstellungen / M-Bus werden die allgemeinen Einstellungen für den M-Bus und die Adressen der M-Busgeräte definiert.

All	gemein	CAL	V-Bus	DL-I	Bu	1/1-1	sus		
•	Allgem	ein							
	Baudra	te	2400						
	Interva	llzeit	00:01:	00 [h	h:m	m:ss]			
-	M-Bus	Gerä	it 1						
	Freigab	e	Nein						
	Adress	e	0						
	M-Bus	Gerä	it 2						
	Freigab	e	Nein						
	Adress	e	0						
-	M-Bus	Gerä	it 3						
	Freigab	e	Nein						
	Adress	e	0						
•	M-Bus	Gerä	it 4						
	Freigab	e	Nein						
	Adress	e	0						

Baudrate

Die Standardbaudrate der M-Busgeräte ist 2400 Baud. Die werksseitige Einstellung muss daher in den meisten Fällen nicht verändert werden.

Intervallzeit

Die Ausleseintervalle können von 30 Sekunden bis 2 Tage eingestellt werden. Große Intervalle belasten die Batterie von batteriebetriebenen M-Buszählern weniger.

M-Bus Gerät 1-4

Für jedes angeschlossene M-Busgerät muss die Freigabe auf "**Ja**" gestellt und die Slave-**Adresse** (zwischen 0 und 250) eingegeben werden. Die Slave-Adresse wird nach den Vorgaben des Herstellers am M-Busgerät eingestellt. Es dürfen keine 2 gleichen Slave-Adressen im M-Busnetz vorhanden sein. Bei **angeschlossenem** M-Busgerät können über den Button **"Liste**" die Geräteinformationen und die empfangenen Daten **ausgelesen** werden.

Beispiel: C.M.I.-Ansicht für einen angeschlossenen M-Buszähler

Die Zugriffsnummer wird nach 255 Zugriffen wieder auf 0 gestellt.

Geräteinformationen

Im oberen Bereich werden geräte- und herstellerspezifische Informationen angezeigt.

Empfangene Daten

Hier können pro Zähler bis zu 128 Werte angezeigt werden. Die Reihenfolge ergibt sich aus der Telegrammadresse und dem **Startbyte**. Zusätzlich wird der ausgelesene Wert mit der Einheit angezeigt.

Beispiel: Der Wert 2 kommt von der Telegrammadresse 1 und dem Startbyte 26. Wert 3 und 4 beziehen beide sich auf das Byte 34, nur mit unterschiedlichen Einheiten.

Die Angaben zu den Werten sind in den Anleitungen der M-Busgerätehersteller enthalten.

M-Bus Eingang

Es können bis zu 32 M-Bus-Eingänge programmiert werden.

Beispiel: Parametrierung des M-Bus-Eingangs 1

Auswahl: Analog oder Digital

Meistens werden analoge Werte (=Zahlenwerte) übernommen.

Allgemein	Allgemein					
Тур	Analog					
Gerät	1					
Datentyp	Wert					
Wertnummer	1					
Teiler	1					
Faktor	1					

Allgemein

Gerät: Eingabe der Gerätenummer It. Geräteeinstellungen (1 – 4)

Wertnummer: Eingabe der Wertnummer aus der **"Liste**" der ausgelesen Geräteinformationen (C.M.I.-Menü **M-Bus-Einstellungen**)

Teiler / Faktor: Eingabe eines Teilers oder Faktors zur Anpassung des ausgelesenen Wertes an die tatsächliche Größe (z.B. richtige Stellung des Kommas).

Bezeichnung

Jedem M-Bus-Eingang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert. Zusätzlich ist die Vergabe von bis zu 16 Indexnummern möglich.

Beispiel:

Gerät	Parameter		
Be	zGruppe	Temperatur Istwert	^
Be	zeichnung	T.Kessel VL	
Be	zIndex	1	

Einheit

Wird als Messgröße **"Automatisch**" übernommen, so wird die Einheit, die das M-Busgerät vorgibt, im Modul angewendet.

•	Einheit	
	Messgröße	Automatisch

Bei Auswahl **"Benutzerdef.**" können eine eigene **Einheit**, eine **Sensorkorrektur** und bei aktivem **Sensorcheck** eine Überwachungsfunktion ausgewählt werden.

Einheit	
Messgröße	Benutzerdef.
Einheit	Temperatur °C
Sensorkorrektur	0,0 K
Wert bei Timeout	Unverändert

Jedem M-Bus-Eingang wird eine **Einheit** zugeordnet, die abweichend zur Einheit des M-Busgeräts sein kann. Es steht eine Vielzahl an Einheiten zur Verfügung.

Sensorkorrektur

Der Wert des M-Bus-Eingangs kann um einen festen Differenzwert korrigiert werden.

Wert bei Timeout

Diese Auswahl wird nur bei Messgröße **"Benutzerdef.**" angezeigt. Diese Anwendung steht derzeit noch **nicht** zur Verfügung.

Sensorcheck

Mit Sensorcheck **"Ja**" steht der **Sensorfehler** des M-Buswertes als digitale Eingangsvariable einer Funktion zur Verfügung.

Diese Anwendung ist nur sinnvoll, wenn für den Sensorfehler benutzerdefinierte Schwell- und Ausgabewerte definiert werden.

🗆 Sei	nsorcheck		
Ser	nsorcheck	Ja	

Sensorfehler

Diese Auswahl wird nur bei Messgröße **"Benutzerdef.**" und bei **aktivem Sensorcheck** angezeigt. **Sensorfehler**: Status **"Nein**" für einen korrekten Wert **innerhalb** der Schwellwerte und **"Ja**" für einen Wert **außerhalb** der Schwellen. Damit kann z.B. auf den Ausfall eines M-Busgeräts reagiert werden.

	Sensorcheck	
	Sensorcheck	Ja
	Kurzschlussschwelle	Standard
	Schwellwert	
	Kurzschlusswert	Standard
	Ausgabewert	
•	Unterbrechungsschwelle	Standard
	Schwellwert	
	Unterbrechungswert	Standard
	Ausgabewert	

Für eine sinnvolle Anwendung des Sensorchecks müssen die Kurzschluss- und Unterbrechungsschwellen von "Standard" auf "**benutzerdefiniert**" gestellt und die gewünschten Schwellwerte definiert werden. Anschließend werden auch die gewünschten Kurzschluss- und Unterbrechungswerte vom Benutzer definiert.

Unterschreitet der ausgelesene Messwert die definierte Kurzschlussschwelle oder überschreitet der Messwert die Unterbrechungsschwelle, dann werden die entsprechenden Ausgabewerte statt des Messwerts übernommen.

Durch geeignete Auswahl der Schwellen und Ausgabewerte kann dem Modul bei Ausfall eines Messwerts ein fixer Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann (fixe Hysterese: 10 bzw. 1,0°C).

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden. **Beispiel:** Temperatur

=	Sensorcheck	
	Sensorcheck	Ja
=	Kurzschlussschwelle	Standard 🗸 🗸
	Schwellwert	Standard
3	Kurzschlusswert	Benutzerdef.
	Ausgabewert	-
		٦٢
9	Sensorcheck	\checkmark
	Sensorcheck	Ja
-	Kurzschlussschwelle	Benutzerdef.
	Schwellwert	10,0 °C
•	Kurzschlusswert	Benutzerdef.
	Ausgabewert	50,0 °C
•	Unterbrechungsschwelle	Benutzerdef.
	Schwellwert	100,0 °C
•	Unterbrechungswert	Benutzerdef.
	Ausgabewert	70.0 °C

Fällt der Messwert unter 10°C wird 50°C ausgegeben, steigt der Messwert über 100°C, wird 70°C ausgegeben.

Nach Abschluss der Parametereingaben mit OK wird der M-Bus-Eingang in TAPPS2 so dargestellt:

Fixwerte

In diesem Menü können bis zu **64 Fixwerte** definiert werden, die z.B. als Eingangsvariablen von Funktionen verwendet werden können.

Beispiel:

Zeichnungsobj	ekt: unbenutzt	~
	unbenutzt	^
Parameter	Fixwert 1	
BezGruppe	Fixwert 2	
Bezeichnung	Fixwert 4	
BezIndex	Fixwert 5	
	Fixwert 6	
Typ	Fixwert 8	
Funktionsgröße	Fixwert 9	
Umschalten	Fixwert 10	
Minimum	Fixwert 12	
Maximum	Fixwert 13	
E Fixwert	Fixweit 14	•
Wert	1	
Änderbar durch		

Fixwerttyp

Nach Auswahl des gewünschten Fixwertes erfolgt die Festlegung des Fixwerttyps.

- Digital
- Analog
- Impuls

Digital

Auswahl der Messgröße:

- Aus / Ein
- Nein / Ja

B Allgemein

Тур	Digital	
Funktionsgröße	Aus / Ein	
Umschalten	Auswahlbox	~
Minimum	Auswahlbox	
Maximum	Klick	

Auswahl, ob der Status über eine Auswahlbox oder durch einfachen Klick umgeschaltet werden kann.

Analog

Auswahl aus einer Vielzahl von Funktionsgrößen

Funktionsgröße	dimensionslos	~
Umschalten	dimensionslos	~
Minimum	dimensionslos(,1)	
Maximum	Arbeitszahl	
Fixwert	dimensionslos(,5)	
Wert	Temperatur °C	
Änderbar durch	Globalstrahlung	

Für Fixwerte steht auch die Funktionsgröße Uhrzeit (Darstellung: 00:00) zur Verfügung.

Ĩ	Minimum	50,0 °C
	Maximum	65,0 °C
	Fixwert	
	Wert	55,0 °C

Nach Vergabe der **Bezeichnung** erfolgt die Festlegung der erlaubten Grenzen und des aktuellen Fixwertes. Innerhalb dieser Grenzen kann der Wert im Menü verstellt werden.

Impuls

Mit diesem Fixwert können kurze **Impulse** durch Antippen im Menü erzeugt werden. **Beispiel:**

	Zeichnungsobj	t: Fixwert 1	~
ar	ameter		
	BezGruppe		
	Bezeichnung		
	BezIndex		
۲	Allgemein		
	Тур	unbenutzt	~
	Funktionsgröße	unbenutzt	
	Umschalten	Digital	
	Minimum	Analog	
	Maximum	mpuls	
•	Fixwert	W2	
	Wert		
	Änderbar durch		
-			

Allgemein		
Тур	Impuls	
Funktionsgröße	EIN-Impuls	~
Umschalten	EIN-Impuls	
Minimum	AUS-Impuls	

Auswahl der **Funktionsgröße**: Bei Betätigung wird wahlweise ein EIN-Impuls (von AUS auf EIN) oder ein AUS-Impuls (von EIN auf AUS) erzeugt werden.

Bezeichnung

Eingabe der Fixwertbezeichnung durch Auswahl vorgegebener Bezeichnungen oder benutzerdefinierter Bezeichnungen.

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

Einschränkung der Veränderbarkeit

Für **alle** Fixwerte kann eingestellt werden, aus welcher Benutzerebene der Fixwert verändert werden darf:

CAN-Bus

Das CAN-Netzwerk ermöglicht die Kommunikation zwischen CAN-Busgeräten. Durch das Versenden von analogen oder digitalen Werten über CAN-**Ausgänge** können andere CAN-Busgeräte diese Werte als CAN-**Eingänge** übernehmen.

Es können bis zu 62 CAN-Busgeräte in einem Netz betrieben werden.

Jedes CAN-Busgerät muss eine eigene Knotennummer im Netz erhalten.

Der Leitungsaufbau eines CAN-Busnetzes wird in der Montageanleitung beschrieben.

Wird ein CAN-Eingang oder CAN-Ausgang in die Zeichnung eingefügt, können erstmalig die Reglereinstellungen festgelegt werden. Diese gelten in der Folge für alle weiteren CAN-Elemente.

CAN-Einstellungen für das Modul RSM610

N-Eingänge - A	nalog 1 - T.Kollektor		
Zeichnungsobje	kt: Analog	/ 1 - T.Kollektor	~
erät 🕽 aramet	er		
erät aramet Knoten	er 32		
Knoten Busrate	er 32 50 kbit/s (Standard))	

Diese Einstellungen können auch im Menü "Datei / Einstellungen / Geräteeinstellungen…" durchgeführt werden:

Knoten

Festlegung der **eigenen** CAN-Knotennummer (Einstellbereich: 1 - 62). Die werksseitig eingestellte Knotennummer des Moduls ist 32. Das Gerät mit der Knotennummer 1 gibt den Zeitstempel für alle anderen CAN-Busgeräte vor.

Busrate

Die Standard-Busrate des CAN-Netzwerkes ist **50 kbit/s** (50 kBaud), die für die meisten CAN-Busgeräte vorgegeben ist.

Wichtig: Es müssen <u>alle</u> Geräte im CAN-Busnetz die <u>gleiche</u> Übertragungsrate haben um miteinander kommunizieren zu können.

Die Busrate kann zwischen 5 und 500 kbit/s eingestellt werden, wobei bei niedrigeren Busraten längere Kabelnetze möglich sind (siehe Montageanleitung).

Bezeichnung

Ger	ät	Paramete	er	
	Knoten Busrate		32 50 kbit/s (Standard)	
<	Bez	zeichnung	Wohnung 1	

Jedem RSM610 kann eine eigene Bezeichnung zugeordnet werden.

Datenlogging

Datei	Bearbeiten Ansicht	Objekt Extras	Hilfe
Ne	eu	Strg+N	1 3 0 A 4 4 1
Öf	fnen	Strg+O	
Schließen	hließen		ent4 X
All	le schließen		ulik Programmierung
Sp	eichern	Strg+S	
Sp	eichern unter		
All	le speichern		
Eir	nstellungen	>	Geräteeinstellungen
Seite einrichten			Funktionen ordnen
Se	itenansicht		Datenlogging
Dr	ucken	Strg+P	

In diesem Menü werden die Parameter für das CAN-Datenlogging analoger und digitaler Werte definiert.

Beispiel: TAPPS2 gibt die programmierten die Ein- und Ausgänge als Standardeinstellung vor. Diese Einstellung kann geändert bzw. ergänzt werden.

rfügbare Parameter	Analoge Werte	Digitale Werte	
a. Eingänge	ANALOG 1	Fingang 1: T.Kollektor - Messwert	
B- Ausgänge	ANALOG 2	Fingang 2: T Speicher unten - Messwert	
- Heizkreis	ANALOG 3	Eingang 3: T.Heizkreis VL - Messwert	
- Mathematik	ANALOG 4	Eingang 4: T.Außen - Messwert	
B-Fixwerte	ANALOG 5	Funktion: Heizkreis - Vorlaufsolltemperatur	
- Systemwerte	ANALOG 6	Funktion: Heizkreis - Effektive Raumsolltemperatur	
CAN-Eingänge Analog	ANALOG 7	Funktion: Mathematik - Ergebnis	
CAN-Eingänge Digital	ANALOG 8	unbenutzt	
	ANALOG 9	unbenutzt	
	ANALOG 10	unbenutzt	
	ANALOG 11	unbenutzt	
	ANALOG 12	unbenutzt	
	ANALOG 13	unbenutzt	
	ANALOG 14	unbenutzt	
	ANALOG 15	unbenutzt	
=>	ANALOG 16	unbenutzt	
	ANALOG 17	unbenutzt	
<=	ANALOG 18	unbenutzt	
	ANALOG 19	unbenutzt	
	ANALOG 20	unbenutzt	
	ANALOG 21	unbenutzt	
	ANALOG 22	unbenutzt	
	ANALOG 23	unbenutzt	
	ANALOG 24	unbenutzt	
	ANALOG 25	unbenutzt	
	ANALOG 26	unbenutzt	
	ANALOG 27	unbenutzt	
	ANALOG 28	unbenutzt	
	ANALOG 29	unbenutzt	
	ANALOG 30	unbenutzt	
	ANALOG 31	unbenutzt	
	ANALOG 32	unbenutzt	
	ANALOG 33	unbenutzt	
	Alle löschen		Standard lad

Für das CAN-Datenlogging ist am C.M.I. eine Mindestversion 1.25 und eine Winsol-Mindestversion 2.06 erforderlich.

Das CAN-Datenlogging ist ausschließlich mit dem C.M.I. möglich. Die Daten für das Logging sind frei wählbar. Es erfolgt keine ständige Datenausgabe. Auf Anfrage eines C.M.I. speichert das Modul die aktuellen Werte in einem Logging-Puffer und sperrt diesen gegen erneutes Überschreiben (bei Anforderungen eines zweiten C.M.I.), bis die Daten ausgelesen und der Logging-Puffer wieder freigegeben wurde.

Die notwendigen Einstellungen des C.M.I. für das Datenlogging über CAN-Bus sind in der Online-Hilfe des C.M.I. beschrieben.

Jeder Regler kann max. 64 digitale und 64 analoge Werte ausgeben, die im Menü "CAN-Bus/Datenlogging" des RSM610 definiert werden.

Die Quellen für die zu loggenden Werte können Eingänge, Ausgänge, Funktions-Ausgangsvariable, Fixwerte, Systemwerte, DL-, CAN- und M-Buseingänge sein.

Hinweis: Digitale Eingänge müssen im Bereich der digitalen Werte definiert werden.

Alle Zählerfunktionen (Energiezähler, Wärmemengenzähler, Zähler)

Es können beliebig viele Zählerfunktionen (aber maximal 64 analoge Werte) geloggt werden. Die zu loggenden Werte der Zähler werden wie alle anderen analogen Werte in die Liste "Datenlogging Analog" eingetragen.

CAN-Analogeingänge

Es können bis zu 64 CAN-Analogeingänge programmiert werden. Diese werden durch die Angabe der **Sender**-Knotennummer sowie der Nummer des CAN-Ausganges des **Sende**knotens festgelegt.

CAN unbenutzt		×	
CAN-Eir	ngänge - unbe	nutzt	×
Zeich	nungsobjekt:	unbenutzt V	~
Gerät	Parameter	unbenutzt Digital	
Be	zGruppe	Analog	

Knotennummer

Nach Eingabe der Knotennummer des **Sendeknotens** werden die weiteren Einstellungen vorgenommen. Vom Gerät mit dieser Knotennummer wird der Wert eines CAN-Analogausgangs übernommen. **Beispiel:** Am CAN-Analog**eingang** 1 wird **vom** Gerät mit der Knotennummer 1 der Wert des CAN-Analog**ausgangs** 1 übernommen.

-	Allgemein		
	Knotennummer	1	
	Ausgangsnummer	1	

Bezeichnung

Jedem CAN-Eingang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

Gerät	Parameter		
Be	zGruppe	Temperatur Istwert	
Be	zeichnung	T.Kollektor	
Be	zIndex	1	

CAN-Bus Timeout

Festlegung der Timeoutzeit des CAN-Eingangs (Mindestwert: 5 Minuten).

-	Allgemein		
	Knotennummer	1	
	Ausgangsnummer	1	
	CAN-Bus Timeout	00:20 [hh:mm]	

Solange die Information laufend vom CAN-Bus eingelesen wird, ist der **Netzwerkfehler** des CAN-Eingangs "**Nein**".

Liegt die letzte Aktualisierung des Wertes schon länger als die eingestellte Timeoutzeit zurück, geht der **Netzwerkfehler** von "**Nein**" auf "**Ja**". Dann kann festgelegt werden, ob der zuletzt übermittelte Wert oder ein auswählbarer Ersatzwert ausgegeben wird (nur bei Einstellung Messgröße: **Benutzer-def.**).

Da der **Netzwerkfehler** als Quelle einer Funktions-Eingangsvariablen ausgewählt werden kann, kann auf den Ausfall des CAN-Busses oder des Sendeknotens entsprechend reagiert werden.

In den Systemwerten / Allgemein steht der Netzwerkfehler aller CAN-Eingänge zur Verfügung.

Einheit

Wird als Messgröße "Automatisch" übernommen, so wird die Einheit, die der Senderknoten vorgibt, im Regler angewendet.

	Einheit				
	Messgröße	Automatisch			

Bei Auswahl **"Benutzerdef."** können eine eigene **Einheit**, eine **Sensorkorrektur** und bei aktivem **Sensorcheck** eine Überwachungsfunktion ausgewählt werden.

-	Einheit	
	Messgröße	Benutzerdef.
	Einheit	Temperatur °C
	Sensorkorrektur	0,0 K

Jedem CAN-Eingang wird eine eigene Einheit zugeordnet, die abweichend zur Einheit des Sendeknotens sein kann. Es stehen verschiedene Einheiten zur Verfügung.

Sensorkorrektur: Der Wert des CAN-Eingangs kann um einen festen Wert korrigiert werden.

Wert bei Timeout

Wird die Timeout-Zeit überschritten, kann festgelegt werden. ob der zuletzt übermittelte Wert ("Unverändert") oder ein einstellbarer Ersatzwert ausgegeben wird.

	Wert bei Timeout	Unverändert	~
	Ausgabewert	Unverändert	
•	Sensorcheck	Benutzerdef.	
	Sensorcheck	Ja F	
	Wert bei Timeout	Benutzerdef.	
	Ausgabewert	20,0 °C	

Sensorcheck

Mit Sensorcheck **"Ja**" steht der **Sensorfehler** des Sensors, von dem der CAN-Eingang übernommen wird, als Eingangsvariable einer Funktion zur Verfügung.

Sensorcheck	Sensorcheck			
Sensorcheck	Ja			

Sensorfehler

Diese Auswahl wird nur bei aktivem Sensorcheck und bei Messgröße "Benutzerdef." angezeigt.

Bei aktivem **"Sensorcheck**" steht der **Sensorfehler** eines CAN-Eingangs als Eingangsvariable von Funktionen zur Verfügung: Status **"Nein**" für einen korrekt arbeitenden Sensor und **"Ja**" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden.

•	Sensorcheck	
	Sensorcheck	Ja
	Kurzschlussschwelle	Standard
	Schwellwert	
	Kurzschlusswert	Standard
	Ausgabewert	
•	Unterbrechungsschwelle	Standard
	Schwellwert	
	Unterbrechungswert	Standard
	Ausgabewert	

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der **Messgrenze** und eine Unterbrechung bei Überschreiten der **Messgrenze** angezeigt.

Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

	Sensorcheck		
	Sensorcheck	Ja	
•	Kurzschlussschwelle	Standard	~
	Schwellwert	Standard	
	Kurzschlusswert	Benutzerdef.	
	Ausgabewert	Û	
E	Kurzschlussschwelle	Benutzerdef.	
	Schwellwert	0,0 °C	

Durch geeignete Auswahl der Schwellen und Werte für Kurzschluss oder Unterbrechung kann bei Ausfall eines Sensors am Sendeknoten dem Modul ein fixer Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann (fixe Hysterese: 1,0°C).

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden.

In den **Systemwerten** / Allgemein steht der Sensorfehler **aller** Eingänge, CAN- und DL-Eingänge zur Verfügung.

CAN-Digitaleingänge

Es können bis zu 64 CAN-Digitaleingänge programmiert werden. Diese werden durch die Angabe der **Sender**-Knotennummer sowie der Nummer des CAN-Ausganges des **Sende**knotens festgelegt.

Die Parametrierung ist fast identisch mit der der CAN-Analogeingänge.

Unter **Messgröße /Benutzerdef.** kann die **Anzeige** für den CAN-Digitaleingang von **AUS / EIN** auf **Nein / Ja** geändert werden und es kann festgelegt werden, ob bei Überschreiten der Timeout-Zeit der zuletzt übermittelte Status ("Unverändert") oder ein auswählbarer Ersatzstatus ausgegeben wird.

CAN-Analogausgänge

Es können bis zu 32 CAN-Analogausgänge programmiert werden. Diese werden durch die Angabe der **Quelle** im Modul festgelegt.

×	CAN	utzt	\supset
CAN-Au	ısgänge - unb	enutzt	×
Zeichnungsobjekt:		unbenutzt V	~
Gerät	Parameter	unbenutzt Digital	
Be	zGruppe	Analog	

Verknüpfung mit der Quelle im Modul, von jener der Wert für den CAN-Ausgang stammt.

• Eingänge

Fixwerte

AusgängeFunktionen

- SystemwerteDL-Bus
- Beispiel: Quelle Eingang 3

=	Eingangsvari	Eingangsvariable		
	Quelletyp	Eingang		
	Quelle	3: T.Außen		
	Variable	Messwert		

Bezeichnung

Jedem CAN-Analogausgang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

-	Eingangsvariable		
	Quelletyp	Eingang	
	Quelle	3: T.Außen	
	Variable	Messwert	

Sendebedingung

Beispiel:

-	Sendebedingung		
	bei Änderung >	10	
	Blockierzeit	00:10 [mm:ss]	
	Intervallzeit	5 Min	

bei Änderung > 10	Bei einer Änderung des aktuellen Wertes gegenüber dem zuletzt gesendeten von mehr als z.B. 1,0K wird erneut gesendet. Im Modul wird die Einheit der Quelle mit der entsprechenden Nachkommastelle übernommen. (Mindestwert: 1)
Blockierzeit 00:10 [mm:ss]	Ändert sich der Wert innerhalb von 10 Sek. seit der letzten Übertragung um mehr als 1,0K wird der Wert trotzdem erst nach 10 Sek. erneut übertragen. (Mindestwert: 1 Sek.)
Intervallzeit 5 Min	Der Wert wird auf jeden Fall alle 5 Minuten übertragen, auch wenn er sich seit der letzten Übertragung nicht um mehr als 1,0K geändert hat (Mindestwert: 1 Minute).

CAN-Digitalausgänge

Es können bis zu 32 CAN-Digitalausgänge programmiert werden. Diese werden durch die Angabe der **Quelle** im Modul festgelegt.

Die Parametrierung ist bis auf die Sendebedingungen identisch mit jener der CAN-Analogausgänge.

Bezeichnung

Jedem CAN-Digitalausgang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

Gerät	Parameter		
Be	zGruppe	Ausgang Allgemein	
Be	zeichnung	Anforderung Wärmepumpe	
Be	zIndex		

Sendebedingungen

Beispiel:

-	Sendebedingu	ng
	bei Änderung	Ja
	Blockierzeit	00:10 [mm:ss]
	Intervallzeit	5 Min

bei Änderung Ja/Nein	Senden der Nachricht bei einer Zustandsänderung
Blockierzeit 00:10 [mm:ss]	Ändert sich der Wert innerhalb von 10 Sek. seit der letzten Übertragung, wird der Wert trotzdem erst nach 10 Sek. erneut übertragen (Mindestwert: 1 Sek.)
Intervallzeit 5 Min	Der Wert wird auf jeden Fall alle 5 Minuten übertragen, auch wenn er sich seit der letzten Übertragung nicht geändert hat (Mindestwert: 1 Minute).

DL-Bus

Der DL-Bus dient als Busleitung für diverse Sensoren und/oder zur Messwertaufzeichnung ("Datenlogging") mittels C.M.I. oder D-LOGG.

Der DL-Bus ist eine bidirektionale Datenleitung und nur mit Produkten der Fa. Technische Alternative kompatibel. Das DL-Busnetz arbeitet unabhängig vom CAN-Busnetz.

Dieses Menü enthält alle Angaben und Einstellungen, die für den Aufbau eines DL-Bus-Netzwerkes notwendig sind.

Der Leitungsaufbau eines DL-Busnetzes wird in der Montageanleitung des Reglers beschrieben.

DL-Einstellungen

Geräteeinstel	lungen		×
Allgemein	CAN-B	u DL-Bus	
Datena	usgabe	Ein	

Im Menü Datei / Einstellungen / Geräteeinstellungen / DL-Bus kann die Daten**ausgabe** für das **Datenlogging** über DL-Bus und für die Anzeigen im Raumsensor **RAS-PLUS** ein- oder ausgeschaltet werden. Für das DL-Datenlogging wird das C.M.I. ver-

wendet. Es werden nur die Ein- und Ausgangswerte und 2 Wärmemengenzähler, aber keine Werte der Netzwerkeingänge ausgegeben.

DL-Eingang

Über einen DL-Eingang werden Sensorwerte von DL-Bussensoren übernommen. Es können bis zu 32 DL-Eingänge programmiert werden.

Beispiel: Parametrierung des DL-Eingangs 1

L-Eingänge - unbe	enutzt	
Zeichnungso	bjekt: unbenutzt	~
-	unbenutzt	^
Parameter	Eingang 1	
	Eingang 2	

Auswahl: Analog oder Digital

Acres 1			
2 - 2	Alla	em	ein
and the second s	/ sing		C 111
	1000 C		

Тур	Analog	
Adresse	1	
Index	1	

DL-Bus Adresse und DL-Bus Index

Jeder DL-Sensor muss eine eigene **DL-Busadresse** haben. Die Einstellung der Adresse des DL-Sensors wird im Sensor-Datenblatt beschrieben.

Die meisten DL-Sensoren können verschiedene Messwerte erfassen (z.B. Volumenstrom und Temperaturen). Es muss für jeden Messwert ein eigener **Index** angegeben werden. Der zutreffende Index kann den dem Datenblatt des DL-Sensors entnommen werden.
Bezeichnung

Jedem DL-Eingang kann eine eigene Bezeichnung gegeben werden. Die Auswahl der Bezeichnung erfolgt wie bei den Eingängen aus verschiedenen Bezeichnungsgruppen oder benutzerdefiniert.

Beispiel:

Parameter		
BezGruppe	Temperatur Istwert	
Bezeichnung	T.Solar VL	
BezIndex		

DL-Bus Timeout

Solange die Information laufend vom DL-Bus eingelesen wird, ist der **Netzwerkfehler** des DL-Eingangs "**Nein**".

Wird nach dreimaliger Abfrage des DL-Sensorwertes durch den Regler kein Wert übermittelt, so geht der **Netzwerkfehler** von "**Nein**" auf "**Ja**". Dann kann festgelegt werden, ob der zuletzt übermittelte Wert oder ein auswählbarer Ersatzwert ausgegeben wird (nur bei Einstellung Messgröße: **Benutzer-def.**).

Da der **Netzwerkfehler** auch als Quelle einer Funktions-Eingangsvariablen ausgewählt werden kann, kann auf einen Ausfall des DL-Busses oder des DL-Sensors entsprechend reagiert werden.

In den Systemwerten / Allgemein steht der Netzwerkfehler aller DL-Eingänge zur Verfügung.

Einheit

Wird als Messgröße "**Automatisch**" übernommen, so wird die Einheit, die der DL-Sensor vorgibt, im Regler angewendet.

🗉 Einheit	heit	
Messgröße	Automatisch	

Bei Auswahl **"Benutzerdef."** können eine eigene **Einheit**, eine **Sensorkorrektur** und bei aktivem **Sensorcheck** eine Überwachungsfunktion ausgewählt werden.

🗉 Einheit	eit	
Messgröße	Benutzerdef.	
Einheit	Temperatur °C	
Sensorkorrektur	0,0 K	

Jedem DL-Eingang wird eine **Einheit** zugeordnet, die abweichend zur Einheit des DL-Sensors sein kann. Es steht eine Vielzahl an Einheiten zur Verfügung.

Sensorkorrektur: Der Wert des DL-Eingangs kann um einen festen Differenzwert korrigiert werden.

Wert bei Timeout

Diese Auswahl wird nur bei Messgröße "Benutzerdef." angezeigt.

Wird ein Timeout festgestellt, kann festgelegt werden. ob der zuletzt übermittelte Wert ("Unverändert") oder ein auswählbarer Ersatzwert ausgegeben wird.

Sensorcheck

Mit Sensorcheck **"Ja**" steht der **Sensorfehler** des Sensors, von dem der DL-Eingang übernommen wird, als Eingangsvariable einer Funktion zur Verfügung.

Sensorcheck		
Sensorcheck	Ja	

Sensorfehler

Diese Auswahl wird nur bei aktivem Sensorcheck und bei Messgröße "Benutzerdef." angezeigt.

Bei aktivem **"Sensorcheck**" steht der **Sensorfehler** eines DL-Eingangs als Eingangsvariable von Funktionen zur Verfügung: Status **"Nein**" für einen korrekt arbeitenden Sensor und **"Ja**" für einen Defekt (Kurzschluss oder Unterbrechung). Damit kann z.B. auf den Ausfall eines Sensors reagiert werden.

		100	
	Sensorcheck	Ja	
•	Kurzschlussschwelle	Standard	
	Schwellwert		
•	Kurzschlusswert	Standard	
	Ausgabewert		
•	Unterbrechungsschwelle	Standard	
	Schwellwert		
•	Unterbrechungswert	Standard	
	Ausgabewert		

Werden die **Standard**-Schwellen gewählt, dann wird ein Kurzschluss bei Unterschreiten der **Messgrenze** und eine Unterbrechung bei Überschreiten der **Messgrenze** angezeigt.

Die **Standard**-Werte für Temperatursensoren sind bei Kurzschluss -9999,9°C und bei Unterbrechung 9999,9°C. Diese Werte werden im Fehlerfall für die internen Berechnungen herangezogen.

	Sensorcheck	Ja
=	Kurzschlussschwelle	Standard 🗸 🗸
	Schwellwert	Standard
-	Kurzschlusswert	Benutzerdef.
	Ausgabewert	
	Ausgabewert	Ţ
-	Ausgabewert	Benutzerdef.

Durch geeignete Auswahl der Schwellen und Werte für Kurzschluss oder Unterbrechung kann bei Ausfall eines Sensors dem Modul ein fixer Wert vorgegeben werden, damit eine Funktion im Notbetrieb weiterarbeiten kann (fixe Hysterese: 1,0°C).

Die Kurzschlussschwelle kann nur unterhalb der Unterbrechungsschwelle definiert werden.

In den Systemwerten / Allgemein steht der Sensorfehler **aller** Eingänge, CAN- und DL-Eingänge zur Verfügung.

DL-Digitaleingänge

Der DL-Bus ist so konzipiert, dass auch Digitalwerte übernommen werden können. Derzeit gibt es aber noch keinen Anwendungsfall dafür.

Die Parametrierung ist fast identisch mit jener der DL-Analogeingänge.

Unter **Messgröße /Benutzerdef.** kann die **Anzeige** für den DL-Digitaleingang auf **Nein/Ja** geändert werden.

Buslast von DL-Sensoren

Die Versorgung und die Signalübergabe von DL-Sensoren erfolgt gemeinsam über eine 2-polige Leitung. Eine zusätzliche Unterstützung der Stromversorgung durch ein externes Netzgerät (wie beim CAN-Bus) ist nicht möglich.

Durch den relativ hohen Strombedarf der DL-Sensoren muss die "Buslast" beachtet werden:

Das Modul RSM610 liefert die maximale Buslast von **100%**. Die Buslasten der DL-Sensoren werden in den technischen Daten der jeweiligen DL-Sensoren angeführt.

Beispiel: Der DL-Sensor FTS4-50DL hat eine Buslast von 25%. Es können daher maximal vier FTS4-50DL an den DL-Bus angeschlossen werden.

DL-Ausgang

Über einen DL-Ausgang können Analog- und Digitalwerte in das DL-Busnetz gesendet werden. Z.B. kann ein **Digitalbefehl** zum Aktivieren eines O₂-Sensors O2-DL ausgegeben werden.

× unt	penutzt	
DL-Ausgänge - un	benutzt	×
Zeichnungs	objekt: unbenutzt ~	
Parameter	unbenutzt Ausgang 1	
DL-Ausgänge - Au Zeichnungs Parameter	sgang 1 - O2-Sensor objekt: Ausgang 1 - O2-Sensor 🗸 🗸	× Eingabe der Bezeichnung Angabe der Quelle im Regler, jener der Wert für den DL-Auso stammt.
The second se	D	• Eingänge
BezGruppe	Benutzerdef.	Lingange
BezGruppe Bezeichnung	O2-Sensor	• Ausgänge
BezGruppe Bezeichnung BezIndex	O2-Sensor	• Ausgänge • Funktionen
BezGruppe Bezeichnung BezIndex Eingangsvari	O2-Sensor	• Ausgänge • Funktionen • Fixwerte
BezGruppe Bezeichnung BezIndex Eingangsvari Quelletyp	Benutzerdef. O2-Sensor able Funktion	• Ausgänge • Funktionen • Fixwerte • Systemwerte
BezGruppe Bezeichnung BezIndex Eingangsvaria Quelletyp Quelle	Benutzerdef. O2-Sensor able Funktion Logik	• Ausgänge • Funktionen • Fixwerte • Systemwerte • CAN-Bus Analog
BezGruppe Bezeichnung BezIndex Eingangsvari Quelletyp Quelle Variable	Benutzerdet. O2-Sensor able Funktion Logik Ergebnis	Ausgänge Funktionen Fixwerte Systemwerte CAN-Bus Analog CAN-Bus Digital
BezGruppe Bezeichnung BezIndex Eingangsvari Quelletyp Quelle Variable Eile	Benutzerdet. O2-Sensor able Funktion Logik Ergebnis	Ausgänge Funktionen Fixwerte Systemwerte CAN-Bus Analog CAN-Bus Digital Angabe der Zieladresse des
BezGruppe Bezeichnung BezIndex Eingangsvaria Quelletyp Quelle Variable Eiel Adresse	Benutzerdet. O2-Sensor able Funktion Logik Ergebnis	Ausgänge Funktionen Fixwerte Systemwerte CAN-Bus Analog CAN-Bus Digital Angabe der Zieladresse des Sensors, der aktiviert werden

Systemwerte

Folgende Systemwerte stehen für Funktions-Eingangsvariablen und CAN- und DL-Ausgänge als Quelle zur Auswahl:

- Allaemein
- Zeit
- Datum
- Sonne

Systemwerte "Allgemein"

Diese Systemwerte erlauben bei entsprechender Programmierung eine Überwachung des Reglersystems.

- Meldung (Meldung) •
- Reglerstart
- Sensorfehler Eingänge
- Meldung (Warnung) Meldung (Störung) •
- Sensorfehler
- Netzfrequenz

- Meldung (Fehler)
- CAN-Knoten
- Ein Systemwert Meldung zeigt an, ob am Regler momentan eine Meldung des angegebenen Typs aktiv ist.

Reglerstart erzeugt 40 Sekunden nach Einschalten des Gerätes bzw. einem Reset einen 20 Sekunden langen Impuls und dient zur Überwachung von Reglerstarts (z.B. nach Stromausfällen) im Datenlogging. Dazu sollte die Intervallzeit im Datenlogging auf 10 Sekunden gestellt sein.

Sensorfehler und Netzwerkfehler sind globale Digitalwerte (Nein/Ja) ohne Bezug auf den Fehlerstatus eines bestimmten Sensors bzw. Netzwerkeingangs.

Hat einer der Sensoren oder Netzwerkeingänge einen Fehler, so ändert sich der zuständige Gruppen-Status von "Nein" auf "Ja".

CAN-Knoten ist der CAN-Knoten dieses Geräts. CAN-Verbindung gibt Ja oder Nein aus, je nachdem, ob ein oder mehrere andere Knoten im CAN-Bus gefunden werden können.

Systemwerte "Zeit"

- Sekunde (der laufenden Uhrzeit)
- Minute (der laufenden Uhrzeit)
- Stunde (der laufenden Uhrzeit)
- Sekundenimpuls
- Minutenimpuls
- Stundenimpuls •
- Sommerzeit (Digitalwert AUS/EIN)
- Uhrzeit (hh:mm)

Systemwerte "Datum"

- Tag
- Monat
- Jahr (ohne Jahrhundertwert)
- Wochentag (beginnend mit Montag)
- Kalenderwoche
- Tag des Jahres
- Tagesimpuls
- Monatsimpuls •
- Jahresimpuls
- **Wochenimpuls**

Die "Impuls"-Werte" erzeugen einen Impuls pro Zeiteinheit.

- Netzwerkfehler CAN
- Netzwerkfehler DL
- CAN-Verbindung

Systemwerte "Sonne"

- Sonnenaufgang (Uhrzeit)
- Sonnenuntergang (Uhrzeit)
- Minuten bis Sonnenaufgang (am gleichen Tag, läuft nicht über Mitternacht)
- Minuten seit Sonnenaufgang
- Minuten bis Sonnenuntergang
- Minuten seit Sonnenuntergang (am gleichen Tag, läuft nicht über Mitternacht)
- Sonnenhöhe (siehe Beschattungsfunktion)
- Sonnenrichtung (siehe Beschattungsfunktion)
- Sonnenhöhe > 0° (Digitalwert EIN/AUS)
- Sonnenhöchststand (Uhrzeit)

Geräteeinstellungen

Datei Bearbeiten Ansich	t Objekt Extras	Hilfe
Neu Öffnen	Strg+N Strg+O	5 C 4 4 4 5
Schließen Alle schließen	Sigro	ulik Programmierung
Speichern Speichern unter Alle speichern	Strg+S	1
Einstellungen	>	Geräteeinstellungen
Seite einrichten Seitenansicht		Funktionen ordnen
Drucken	Strg+P	

In diesem Menü werden globale Einstellungen für das Modul, den CAN- und den DL-Bus vorgenommen.

Allgemein

	<i>c</i> .			1	
Ξ	Grund	einstellungen	-		
	Währu	ng	Euro		
-	Benutz	zer	7 m / 1		
	Fachm	ann-Kennwort	64	_	
	Experte	en-Kennwort	128	_	
	Zugan	g Menü	Anwender		
Ξ	Uhrzei	it / Standort			
	autom	. Zeitumstellung	Ja		
	Zeitzone		01:00 [hh:mm]		
	GPS Br	eite	48,836500 °		
	GPS Länge		15,080000 °		
Ξ	Benutzerdefinierte Bezeichnungen				
	Sprach	e	Deutsch		
			07		

Währung

Auswahl der Währung für die Ertragszählung

Fachmann- / Experten-Kennwort

Eingabe der Kennwörter für diese Programmierung.

Zugang Menü

Festlegung, aus welcher Benutzerebene der Zugang zum Hauptmenü erlaubt wird.

Ist der Zugang zum Menü nur dem **Fachmann** oder dem **Experten** erlaubt, muss bei Anwahl des Hauptmenüs aus der Startseite der Funktionsübersicht das entsprechende **Passwort** eingegeben werden.

Uhrzeit / Standort

- **automatische Zeitumstellung** Wenn **"Ja**", erfolgt die automatische Sommerzeitumstellung nach den Vorgaben der Europäischen Union.
- **Zeitzone** 01:00 bedeutet die Zeitzone "**UTC + 1 Stunde**". **UTC** steht für "Universal Time Coordinated", früher auch als GMT (= Greenwich Mean Time) bezeichnet.
- **GPS Breite** Geographische Breite nach GPS (= global positioning system satellitengestütztes Navigationssystem),
- **GPS Länge** Geographische Länge nach GPS

Mit den Werten für die geographische Länge und Breite werden die standortbezogenen Sonnendaten ermittelt. Diese können in Funktionen (z.B. Beschattungsfunktion) verwendet werden.

Die werksseitige Voreinstellung für die GPS-Daten bezieht sich auf den Standort der Technischen Alternative in Amaliendorf / Österreich.

CAN- /DL- / M-Bus

Diese Einstellungen werden in den Kapiteln CAN-Bus, DL-Bus und M-Bus beschrieben.

C.M.I. Menü

Sollwertänderung

Beispiel:

Ändern des Wertes "T.Raum Normal" der Heizkreisfunktion

Anlegen neuer Elemente

von Ein- oder Ausgängen, Fixwerten, Funktionen Meldungen, CAN- oder DL-Bus **Beispiel:** Anlegen eines bisher unbenutzten Ausgangs als Schaltausgang:

A	usgänge		
1: Heizkreispumpe	Auto/E	N	
2: unbenutzt 👋			
	Į,		
Aus	gang 2		
Тур	unbenutzt 👆	S	
Change Value	×		
unbenutzt 🗸			Nach Auswahl, Abschluss
unbenutzt Schaltausgang	Old Abbreaker		mit "OK".
	OK Abbrechen		
	Ţ		
Aus	gang 2		
Тур	Schaltausgang	S	
Bezeichnung		₽	
Allgemein			Anschließend kann eine Be-
Ventil-Solar			zeichnung eingegeben, so- wie weitere Einstellungen
			vorgenommen werden.
Verzögerung	Os		
Nachlauf	0s		
Handbetrieb änderbar			
durch	Anwender		

Datum / Uhrzeit/ Standort

In der Statuszeile werden rechts oben das Datum und die Uhrzeit angezeigt.

In einem CAN-Netzwerk werden Datum und Uhrzeit vom Netzwerkknoten 1 übernommen.

Durch Anwahl dieses Statusfeldes gelangt man in das Menü für Datum, Uhrzeit und Standortangaben.

Beispiel:

Datum / Uhrzeit / Standort				
Zeitzone	01:00			
automatische Zeitumstellung	Ja			
Sommerzeit	Nein			
Datum	17.11.2017			
Uhrzeit	09:42			
GPS Breite	48.836500 °			
GPS Länge	15.080000 °			
Sonnenaufgang	07:10			
Sonnenhöchststand	11:44			
Sonnenuntergang	16:18			
Sonnenhöhe	17.0 °			
Sonnenrichtung	149.6 °			

Änderungen bei Uhrzeit und Datum werden nur dann übernommen, wenn im Netzwerk kein anderes Gerät die Knotennummer 1 hat. Zuerst werden die Parameter für die Systemwerte angezeigt.

- Zeitzone Eingabe der Zeitzone im Verhältnis zur UTC (= "Universal Time Coordinated", früher auch als GMT (= Greenwich Mean Time) bezeichnet). Im Beispiel ist die Zeitzone "UTC + 01:00" eingestellt.
- **Sommerzeit** "**Ja**", wenn die Sommerzeit aktiv ist. Nur änderbar, wenn die "automatische Zeitumstellung" auf "Nein" steht.
- **automatische Zeitumstellung** Wenn "**Ja**", erfolgt die automatische Sommerzeitumstellung nach den Vorgaben der Europäischen Union.
- Datum Eingabe des aktuellen Datums (TT.MM.JJ).
- Uhrzeit Eingabe der aktuellen Uhrzeit
- **GPS Breite** Geographische Breite nach GPS (= global positioning system satellitengestütztes Navigationssystem),
- **GPS Länge** Geographische Länge nach GPS

Mit den Werten für die geographische Länge und Breite werden die standortbezogenen Sonnendaten ermittelt. Diese können in Funktionen (z.B. Beschattungsfunktion) verwendet werden.

Die werksseitige Voreinstellung für die GPS-Daten bezieht sich auf den Standort der Technischen Alternative in Amaliendorf / Österreich.

- Sonnenaufgang Uhrzeit
- Sonnenuntergang Uhrzeit
- Sonnenhöhe Angabe in ° vom geometrischen Horizont (0°) aus gemessen,
 - Zenit = 90°
- Sonnenrichtung Angabe in ° von Norden (0°) aus gemessen
 - Nord = 0° Ost = 90° Süd = 180° West = 270°

Werteübersicht

In diesem Menü werden die aktuellen Werte der **Eingänge** 1–6, der **DL- Eingänge** und der analogen und digitalen **CAN-Eingänge** angezeigt.

Die verschiedenen Werte werden durch Auswahl der gewünschten Gruppe sichtbar.

Beispiel: Eingänge

Werteübersicht					
Eingänge DL-Bus CAN-Bus Digital					
26.5 °C Zeit/Auto	28.6 °C	29.2 °C	90.1 °C		
62.8 °C 0					

Eingänge

Die **Methode** der Parametrierung über das C.M.I. ist immer gleich, hier wird daher als Beispiel nur die Parametrierung der Eingänge beschrieben.

Das Modul besitzt 6 Eingänge für analoge (Messwerte), digitale (EIN/AUS) Signale oder Impulse.

Nach Anwahl im Hauptmenü werden die Eingänge mit ihrer Bezeichnung und dem aktuellen Messwert bzw. Zustand angezeigt.

Beispiel einer bereits programmierten Anlage, Eingang 6 ist noch unbenutzt:

Eingänge		
1: T.Raum	26.5 °C Zeit/Auto	
2: T.Heizkreis VL	28.6 °C	
3: T.Außen	29.1 °C	
4: T.Kollektor	90.2 °C	
5: T.Speicher unten 1	62.8 °C	
6: unbenutzt		

Parametrierung

Sensortyp und Mess- und Prozessgröße

Nach Auswahl des gewünschten Eingangs erfolgt die Festlegung des Sensortyps.

6: unbenutzt

Zuerst erfolgt die grundsätzliche Abfrage für den Typ des Eingangssignals.

Dann erfolgt die Auswahl der **Messgröße.** Für die Messgröße **"Temperatur**" muss auch der **Sensortyp** definiert werden.

Für die Messgrößen Spannung und Widerstand wird die Prozessgröße ausgewählt:

- dimensionslos
- dimensionslos (,1)
- Arbeitszahl
- dimensionslos (,5)
- Temperatur °C
- Globalstrahlung
- CO₂-Gehalt ppm
- Prozent

- Absolute Feuchte
- Druck bar, mbar, Pascal
- Liter
- Kubikmeter
- Durchfluss (l/min, l/h, l/d, m³/min, m³/h, m³/d)
- Leistung
 - Spannung

- Stromstärke mA
- Stromstärke A
- Widerstand
- Geschwindigkeit km/h
- Geschwindigkeit m/s
- Grad (Winkel)

Anschließend muss der Wertebereich mit der **Skalierung** festgelegt werden. **Beispiel** Spannung/Globalstrahlung:

Skalierung	
Eingangswert 1	0.00 V
Zielwert 1	0 W/m ²
Eingangswert 2	3.00 V
Zielwert 2	1500 W/m ²

0,00V entsprechen 0 W/m², 3,00V ergeben 1500 W/m².

Impulseingang

Der Eingang 6 kann Impulse mit max. 20 Hz und mindestens 25 ms Impulsdauer erfassen (S0-Impulse).

Die Eingänge 2 - 5 können Impulse mit **max. 10 Hz** und mindestens **50 ms** Impulsdauer erfassen. **Auswahl der Messgröße**

Change Value		×
Benutzerdefiniert v Windgeschwindigkeit]	
Durchfluss Impuls	ок	Abbrechen
Benutzerdefiniert		

Windgeschwindigkeit

Für die Messgröße "**Windgeschwindigkeit**" muss ein Quotient eingegeben werden. Das ist die Signalfrequenz bei **1 km/h**.

Beispiel: Der Windsensor **WIS01** gibt bei einer Windgeschwindigkeit von 20 km/h jede Sekunde einen Impuls aus (= 1Hz). Daher ist die Frequenz bei 1 km/h gleich 0,05Hz.

Quotient	0.05 Hz
quotion	0.00112

Einstellbereich: 0,01 – 1,00 Hz

Durchfluss

Für die Messgröße **"Durchfluss**" muss ein Quotient eingegeben werden. Das ist die Durchflussmenge in Liter pro Impuls.

Quotient	0.5 l/Imp	Einstellbereich: 0,1 – 100,0 l/Impuls
----------	-----------	---------------------------------------

Impuls

Diese Messgröße dient als Eingangsvariable für die Funktion "**Zähler**", Impulszähler mit Einheit "Impulse".

Benutzerdefiniert

Für die Messgröße "Benutzerdefiniert" müssen ein Quotient und die Einheit eingegeben werden.

Quotient	0.50000 l/Imp
Einheit	
Zeiteinheit	/h

Einstellbereich Quotient: 0,00001 – 1000,00000 Einheiten/Impuls (5 Nachkommastellen) Einheiten: I, kW, km, m, mm, m³.

Für l, mm und m³ muss zusätzlich die Zeiteinheit ausgewählt werden. Für km und m sind die Zeiteinheiten fix vorgegeben.

Beispiel: Für die Funktion "Energiezähler" kann die Einheit "kW" verwendet werden. Es wurde 0,00125 kWh/Impuls gewählt, das entspricht 800 Impulse /kWh.

Quotient	0.00125 kWh/Imp
Einheit	kW

Bezeichnung

Eingabe der Eingangsbezeichnung durch Auswahl vorgegebener Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierter Bezeichnungen.

Zusätzlich kann jeder Bezeichnung eine Zahl 1 – 16 zugeordnet werden.

Sensorkorrektur, Mittelwert, Sensorcheck (für analoge Sensoren)

Sensorkorrektur	0.0 K
Mittelwert	1.0s
Sensorcheck	Ja

Ein aktiver **"Sensorcheck**" (Eingabe: **"Ja**") erzeugt bei einem Kurzschluss bzw. einer Unterbrechung automatisch eine Fehlermeldung: In der oberen Statusleiste wird ein **Warndreieck** angezeigt, im Menü **"Eingänge**" erhält der defekte Sensor einen roten Rahmen.

Beispiel:

1 2 8 +4 5 6 7 8		Eingänge		Unterbr Sensors Standar	o 7 2017 10-52 echung des s 1 rd-Wert
	1: T.Kollektor		2 9999.9	°C	

Ausgänge Anzeige des Ausgangsstatus

Beispiel einer bereits programmierten Anlage

Die eingeschalteten Ausgänge werden grün hervorgehoben.

Ausgänge im **Handbetrieb** werden durch ein **Handsymbol** unterhalb der Ausgangsnummer gekennzeichnet.

Beispiel: Dominant geschaltete Ausgänge (durch Funktion "Meldung"):

Anzeige der Analogausgänge

In der Menüanzeige des C.M.I. werden der Betriebszustand und der Ausgabewert des Analogausgangs angezeigt. Der Ausgangsstatus kann durch Anklicken geändert werden.

- Auto: Ausgabe entsprechend der Quelle und Skalierung
- Hand: einstellbarer Wert
- Hand/AUS: Ausgabe It. Einstellung "Dominant Aus"
- Hand/EIN: Ausgabe It. Einstellung "Digital Ein"

Ausgangszähler 🤑

	Ausgang 2	
Тур	Schaltausgang	
Bezeichnung		
Allgemein		
Solarpumpe		

Durch Anwahl des Symbols können **für jeden Ausgang** die Betriebsstunden und Impulse (Einschaltungen) abgelesen werden.

Ausgang 2 Zählstand seit 22.05.2017 Gesamtzählerstände löschen Betriebsstunden Es werden die Gesamtbe-Betriebsstunden 07d 02h 23m 49s triebsstunden, die Betriebsstunden des Vortags und Betriebsstunden von heute, sowie des letzten Vortag 0s und des aktuellen Laufs angezeigt. Betriebsstunden heute 03h 04m 51s Betriebsstunden letzter Lauf 0s Betriebsstunden aktueller Lauf 03h 04m 51s Unterhalb der Betriebsstun-Betriebsstunden heute löschen den können die Impulse (Schaltungen) abgelesen Impulse werden. Impulse 33 Es werden die Gesamtzahl der Impulse (Ein-schaltun-Impulse Vortag 0 gen), die Impulszahl des Vortags und von heute an-Impulse heute 1 gezeigt. Impulse heute löschen

Beispiel: Beim Ausgang 2 kann der Zählerstand seit dem 22.5.2017 abgelesen werden.

• **ACHTUNG:** Die Zählerstände werden jede Stunde in den internen Speicher geschrieben. Bei einem Stromausfall kann daher die Zählung von maximal 1 Stunde verlorengehen.

• Beim Laden von Funktionsdaten wird abgefragt, ob die gespeicherten Zählerstände übernommen werden sollen.

Zählerstände löschen

Gesamtzählerstände löschen

Nach Klicken auf den Button wird abgefragt, ob man die **gesamten** Zählerstände und **"Vortag**" des Betriebsstunden- **und** des Impulszählers löschen möchte. Die Zählerstände **"heute**" und **"letzter Lauf**" und **"aktueller Lauf**" werden damit nicht gelöscht.

Betriebsstunden oder Impulse heute löschen

Nach Klicken auf den Button wird abgefragt, ob man die **heute** gezählten Betriebsstunden bzw. Impulse löschen möchte. Betriebsstunden **"Letzter Lauf**" und **"aktueller Lauf**" werden dadurch **nicht** gelöscht.

Anzeige der Verknüpfungen 🥊

	Ausgang 1	
Тур	Schaltausgang	
Bezeichnung		N
Allgemein		
Heizkreispumpe		

Nach Anwahl des Symbols werden für den Ausgang die Verknüpfungen mit den Funktionen angezeigt.

Beispiel:

Ausgang 1	
1: Heizkreis	S.
Heizkreispumpe AUS	J.L
2: Zeitprogramm Heizkreis	
Status Zeitbedingung EIN	

In diesem Beispiel wird der Ausgang 1 von 2 Funktionen angesteuert, wobei er gerade von der Funktion 2 (Schaltuhr) eingeschaltet wird.

Durch Anwahl einer Funktion gelangt man **direkt** in die Parametrierung der Funktion.

Fixwerte Ändern eines digitalen Fixwertes

Durch Antippen des **hell unterlegten** Schaltfelds kann der Fixwert geändert werden. **Beispiel**: Umschaltung von **EIN** auf **AUS** durch Auswahlbox

Ändern eines analogen Fixwertes

Durch Antippen des **hell unterlegten** Schaltfeldes kann der Fixwert geändert werden. **Beispiel:**

Es wird der aktuelle Wert vorgegeben (Beispiel: 50,0°C). Durch Anklicken eines AUF- oder AB-Pfeils kann der Sollwert verändert werden. Es ist aber auch möglich, den Wert zu markieren und durch den gewünschten Wert zu überschreiben:

Aktivieren eines Impuls-Fixwertes

Durch Antippen des hell unterlegten Schaltfeldes kann der Impuls aktiviert werden.

Grundeinstellungen

12 3+456 7 8910			DO 20.7.2017	11:09
	Werteübersicht	Eingänge		33
	Fixwerte	Ausgänge		-
	Funktionen	Meldungen		Ē
CAN	CAN-Bus	DL-Bus		2
	Grundeinstellungen	Benutzer		
C	deinetellungen			

Grun	demstenungen	
Simulation	AUS]
Zugang Menü	Anwender	
Währung	Euro	
Benutzerdefinierte I	Bezeichnungen)

Dieses Menü ist nur dem "Fachmann" oder dem "Experten" zugänglich.

In diesem Menü werden Einstellungen durchgeführt, die in der Folge für alle weiteren Menüs gelten.

Simulation - Möglichkeit den Simulationsmodus zu aktivieren (nur im Expertenmodus möglich):

- · Keine Mittelwertbildung der Außentemperatur in der Heizkreisregelung.
- Alle Temperatureingänge werden als PT1000 Fühler vermessen, auch wenn eine andere Sensortype definiert ist.
- · Keine Auswertung eines Raumsensors als RAS.

Auswahl: AUS

Analog – Simulation mit dem Entwicklungsset EWS16x2

CAN-Simboard – Simulation mit dem SIM-BOARD-USB-UVR16x2 zur Simulation in einer Anlage

Der Simulationsmodus wird automatisch beim Verlassen der Expertenebene beendet.

Zugang Menü - Festlegung, aus welcher Benutzerebene der Zugang zum Hauptmenü erlaubt wird.

Ist der Zugang zum Menü nur dem **Fachmann** oder dem **Experten** erlaubt, muss bei Anwahl des Hauptmenüs das entsprechende **Passwort** eingegeben werden.

Währung – Auswahl der Währung für die Ertragszählung

Benutzerdefinierte Bezeichnungen - Zur Bezeichnung aller Elemente können vorgegebene Bezeichnungen aus verschiedenen Bezeichnungsgruppen oder benutzerdefinierte Bezeichnungen ausgewählt werden. Es können bis zu **100 verschiedene Bezeichnungen** vom Benutzer definiert werden. Die maximale Anzahl an Zeichen pro Bezeichnung ist **24**.

Version und Seriennummer

In diesem Menü werden die **Seriennummer**, interne Produktionsdaten und der Namen der aktuellen Funktionsdaten (mit Datum) angezeigt.

Die Seriennummer ist auch am Leistungsschild des Moduls ersichtlich.

Meldungen

Dieses C.M.I.-Menü zeigt aktivierte Meldungen an.

1 2 3+4 5 6 7 8	9 10				DO 20.7.20	17 11:16
	E	Werteübersic	ht 🚽	Eingänge		33
		Fixwerte		Ausgänge		
		Funktionen		Meldungen	\supset	Ē
			k	ļ		
Beispiel: Meldung	13 ist a	ktiv.		v		
123+45678	9 10				DO 20.7.20	17 11:17
1 <mark>2</mark> 3+4 5 6 <mark>7</mark> 8	9 1		Meldunge	n	DO 20.7.20	17 11:17 33
123+45678	13:	Zirkulation	Meldunge	n 20.07.20 ⁻ 11:	DO 20.7.20	17 11:17 33
1 2 3+4 5 6 <mark>7</mark> 8	13:	Zirkulation	Meldunge	n 20.07.20 ⁻ 11:	DO 20.7.20	17 11:17 33 11 33

Ist mindestens eine Meldung aktiv, so wird in der oberen Statuszeile ein Warndreieck eingeblendet.

Genauere Erläuterungen zu den Meldungen werden in der Anleitung "**Programmierung / Teil 2: Funk**tionen, Kapitel Meldung" angeführt.

Benutzer

12 3+456 7 89	10		DO 20.7.2017 11:18
	Werteübersicht	Eingänge	33
	Fixwerte	Ausgänge	
	F unktionen	Meldungen	
	CAN CAN-Bus	DL-Bus	
	Grundeinstellungen	Benutzer	
	$\hat{\Gamma}$		
	Benutzer		
	Aktueller Benutzer Anwender Fachmann Experte		
Fachmann-Pa	asswort ändern		
Experten-Pas	sswort ändern		

Aktueller Benutzer

Beim Einstieg in das Menü des Moduls ist der Benutzer in der Anwenderebene.

Zum Einstieg in die Fachmann- oder Expertenebene ist die Eingabe eines **Passwortes** notwendig, das vom Programmierer vorgegeben werden kann.

Nach dem Laden von Funktionsdaten springt der Regler in die Anwenderebene zurück und übernimmt die programmierten Passwörter.

Nach einem Reglerstart befindet sich der Regler immer in der Anwenderebene.

Das Passwort wird im Programm TAPPS2 festgelegt und kann bei Zugriff in der Expertenebene über UVR16x2, UVR610 oder CAN-MTx2 geändert werden.

Liste der erlaubten Aktionen

Benutzer	Anzeigen und erlaubte Aktionen
Anwender	Funktionsübersicht mit Bedienmöglichkeit
	 Zugang zum Hauptmenü nur, wenn in den "Grundeinstellungen" für "Anwender" freigegeben
	Werteübersicht
	Eingänge: nur Anzeige, kein Einstieg in die Parameter
	 Ausgänge: Änderung des Ausgangsstatus der f ür den Anwender freigegebenen Ausgänge, Anzeige der Betriebsstunden, kein Einstieg in die Parameter
	 Fixwerte: Änderung des Wertes oder des Status der f ür den Anwender freigege- benen Fixwerte, kein Einstieg in die Parameter
	Funktionen: Anzeige des Funktionsstatus, kein Einstieg in die Parameter
	Meldungen: Anzeige aktiver Meldungen
	CAN- und DL-Bus: kein Einstieg in die Parameter
	Grundeinstellungen: kein Einstieg möglich
	Benutzer: Änderung Benutzer (mit Passworteingabe)
	 Systemwerte: Einstellung von Datum, Uhrzeit, Standortdaten, Anzeige der Systemwerte
Fachmann	Zusätzlich:
	 Zugang zum Hauptmenü nur, wenn in den "Grundeinstellungen" für Fachmann oder Anwender freigegeben
	 Änderung der Parameter f ür Eingänge (au ßer Typ und Messgr ö ße), keine Neude- finition
	 Änderung der Parameter f ür Ausg änge (au ßer Typ; Status nur, wenn f ür Anwen- der oder Fachmann freigegeben), keine Neudefinition
	 Änderung der Parameter f ür Fixwerte (au ßer Typ und Messgr ö ße, Wert oder Sta- tus nur, wenn f ür Anwender oder Fachmann freigegeben), keine Neudefinition
	 Grundeinstellungen: Änderung und Neudefinition benutzerdefinierter Bezeich- nungen, Auswahl der Währung
	 Funktionen: Änderung von benutzerdefinierten Eingangsvariablen und Parame- tern
	 alle Einstellungen in den Menüs CAN- und DL-Bus
	Aktionen der Datenverwaltung
Experte	Dem Experten sind alle Aktionen erlaubt und alle Anzeigen zugänglich.

Automatische Umschaltung

Im Normalfall schaltet das Modul automatisch 30 Minuten **nach dem Einloggen** als Experte oder Fachmann in den **Anwendermodus** zurück.

Datenverwaltung

C.M.I. - Menü Datenverwaltung

Totalreset

Ein Totalreset ist nur aus der Fachmann- oder Expertenebene nach einer Sicherheitsabfrage möglich.

Ein **Totalreset** löscht die Funktionsmodule, die Parametrierung aller Ein- und Ausgänge, Bus-Ein- und Ausgänge, Fix- und Systemwerte. Die Einstellungen für die CAN-Knotennummer und die CAN-Busrate bleiben erhalten.

Nach dem Antippen kommt eine Sicherheitsabfrage, ob ein Totalreset durchgeführt werden soll.

Neustart

Am Ende des Menüs "Datenverwaltung" besteht die Möglichkeit, einen Neustart des Reglers nach einer Sicherheitsabfrage durchzuführen ohne den Regler vom Netz zu trennen.

Laden der Funktionsdaten oder Firmware-Update über C.M.I.

Im C.M.I.-Menü **Datenverwaltung** können Funktionsdaten geladen oder gespeichert und die Firmware (das Betriebssystem) in das Modul geladen werden.

Für jede Sprache ist eine eigene Betriebssystemversion notwendig. Es gibt daher, anders als im Regler UVR16x2, im Modul keine Sprachauswahl.

Zuerst muss die erforderliche Datei auf die SD-Karte des C.M.I. geladen werden. Anschließend wird die Datei auf das RSM610 übertragen.

Diese Aktionen werden durch einfaches Ziehen mit festgehaltener linker Maustaste ("**Drag & Drop**") durchgeführt.

Beispiel: Laden von Funktionsdaten von der SD-Karte in das RSM610

Vor dem Start des Datentransfers wird das Verhalten der Zählerstände und das **Experten**oder **Fachmannpasswort** abgefragt.

Laden der Funktionsdaten oder Firmware-Update über UVR16x2 oder CAN-MTx2

Der Datentransfer ist nur in der Fachmann- oder Expertenebene im Menü Datenverwaltung möglich.

Um die Datei an das RSM610 zu senden, tippt man auf das Plus-Symbol, dann wird eine Auswahl sichtbar.

Funktionsdaten	
Laden	
RSM610.dat	
✓	
Wollen Sie die Datei wirklich an den ausgewählten Knoten senden?	
"RSM610.dat"	
Bitte wählen	
	\checkmark

Auswahl der **Knotennummer** und abschließend Antippen von **Solution**. Durch Antippen von **Solution** wird der Vorgang abgebrochen. Der Datentransfer ist erst nach Eingabe des Fachmann- oder Expertenpassworts des Zielgeräts möglich.

Laden der Funktionsdaten oder Firmware über UVR610

Der Datentransfer ist nur in der Fachmann- oder Expertenebene im Menü Datenverwaltung möglich.

Auswahl der Knotennummer und abschließend Antippen von 🚺 🪽

Durch Antippen von (X) wird der Vorgang abgebrochen. Der Datentransfer ist erst nach Eingabe des Fachmann- oder Expertenpassworts des Zielgeräts möglich.

Reset

Durch **kurzen** Tastendruck (mit einem dünnen Stift) auf die Reset-Taste auf der Vorderseite des Reglers wird ein Reset durchgeführt.

Totalreset: Durch **langen** Tastendruck beginnt die Staus-LED **schnell** zu blinken. Die Taste muss solange gehalten werden, bis das schnelle Blinken in langsames Blinken übergeht.

Ein **Totalreset** löscht alle Funktionsmodule, die Parametrierung alle Ein- und Ausgänge, Bus-Ein- und Ausgänge, Fix- und Systemwerte und die CAN-Bus-Einstellungen.

LED-Statusanzeigen

Eine aktive **Meldung** kann durch eine geänderte Status-Anzeige angezeigt werden. Die Einstellung dafür erfolgt im **Parametermenü** der Funktion **"Meldung**".

Kontrolllampe	Erklärung
Rotes Dauerlicht	Der Regler bootet (= Startroutine nach dem Einschalten, einem Reset oder Update) oder
Oranges Dauerlicht	Hardware-Initialisierung nach dem Booten
Grünes Blinken	Nach der Hardwareinitialisierung wartet der Regler ca. 30 Sekunden um alle für die Funktion notwendigen Informationen zu bekommen (Sensorwerte, Netzwerkeingänge)
Grünes Dauerlicht	Normaler Betrieb des Reglers

Status-Anzeigen beim Reglerstart

Technische Daten RSM610

alle Eingänge	Temperatursensoren der Typen PT1000, KTY (2 k Ω /25°C), KTY (1 k Ω /25°C), PT100, PT500, Ni1000, Ni1000TK5000 und Raumsensoren RAS bzw. RASPT, Strahlungssensor GBS01, Thermoelement THEL-MV (ohne DL), Feuchtesensor RFS, Regensensor RES01, Impulse max. 10 Hz (z.B. für Volumenimpulsgeber VIG), Spannung bis 3,3V DC , Widerstand (1-100k Ω), sowie als Digitaleingang
Eingänge 4, 5	zusätzlich Spannung 0-10V DC
Eingang 6	zusätzlich Impulseingang max. 20 Hz , z.B. für Volumenimpulsge- ber VIG oder S0-Signale
Ausgang 1-5	Relaisausgänge, Schließer
Ausgang 6	Relaisumschaltkontakt - potentialfrei
Ausgänge 7 - 10	Analogausgänge 0-10V (max. 20mA) oder PWM (10V/1kHz) in jeweils 1000 Stufen (=0,01V bzw. 0,1% pro Stufe) oder Erweite- rungsmöglichkeit als Schaltausgänge mit Zusatzrelaismodulen
Ausgang 7 RSM610-24, -MB24	Versorgung für externe 24V-Geräte, in Summe mit den 12V-Gerä- ten max. 6W
Ausgang 9 RSM610-MB, -MB24	M-Bus-Eingang für bis zu 4 M-Bus-Zähler
max. Schaltleistung	je Ausgang 230V / 3A
max. Buslast (DL-Bus)	100%
CAN-Bus	Standard-Datenrate 50 kbit/s, einstellbar von 5 bis 500 kbit/s
M-Bus RSM610-MB, -MB24	Standard-Baudrate 2400 Baud, einstellbar von 300 bis 38400 Baud, max. 4 M-Busgeräte auslesbar
12V	Versorgung für externe Geräte, in Summe max. 6W
Differenztemperaturen	mit getrennter Ein- und Ausschaltdifferenz
Schwellwerte	mit getrennter Ein- und Ausschaltdifferenz oder mit fixer Hysterese
Temperaturmessbereich	PT100, PT500, PT1000: -200,0°C bis + 850°C mit einer Auflösung von 0,1K; alle anderen Temperatursensoren: -49,9°C bis +249,9°C mit einer Auflösung von 0,1K
Genauigkeit Temperatur	typ. 0,4K, max. ±1K im Bereich von 0 - 100°C für PT1000-Sensoren
Genauigkeit Widerstands- messung	max. 1,6% bei 100kΩ (Messgröße: Widerstand, Prozessgröße: Widerstand)
Genauigkeit Spannung	typ. 1%, max. 3% vom maximalen Messbereich des Eingangs
Genauigkeit Ausgang 0-10V	max2% bis +6%
Anschluss	100 - 230V, 50- 60Hz, (Ausgänge A1 – A5 und Gerät gemeinsam abgesichert mit 6,3A flink)
Zuleitung	3 x 1mm ² H05VV-F laut EN 60730-1 (Kabel mit Schutzkontaktstec- ker im Sensor-Grundpaket enthalten)
Leistungsaufnahme	1,0 – 1,9 W, je nach Anzahl aktiver Schaltausgänge
Schutzart	IP20
Schutzklasse	II – Schutzisoliert 🔲
Zulässige Umgebungstem- peratur	+5 bis +45°C

Technische Änderungen sowie Satz- und Druckfehler vorbehalten. Diese Anleitung ist nur für Geräte mit entsprechender Firmware-Version gültig. Unsere Produkte unterliegen ständigem technischen Fortschritt und Weiterentwicklung, wir behalten uns deshalb vor, Änderungen ohne gesonderte Benachrichtigung vorzunehmen.

Impressum

Diese Bedienungsanleitung ist urheberrechtlich geschützt.

Eine Verwendung außerhalb des Urheberrechts bedarf der Zustimmung der Firma Technische Alternative RT GmbH. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen und elektronische Medien.

Technische Alternative RT GmbH

A-3872 Amaliendorf, Langestraße 124

Tel.: +43 (0)2862 53635

E-Mail: mail@ta.co.at

Fax +43 (0)2862 53635 7

--- www.ta.co.at ---

CE

©2024